Schwere COVID-19-Verläufe bei Kindern

Vorweg: Twitter mal wieder

An folgendem Tweet bin ich bei Twitter hängen geblieben:

Vor allem die Formulierung „brain spongiosis“ machte mich hellhörig, weil das etwas ist, was ich mit Prionen-Erkrankung, wie Creutzfeldt-Jakob (Link Wikipedia) oder BSE (Link Wikipedia) verbinde. In deutschsprachigen Accounts wurde das ganze dann auch wie folgt kommentiert:

oder

Ganz kurzer Exkurs: Bei der in den Drukos von Frau Dr. Werner per Screenshot einer NDR-Seite erwähnten Arbeit aus Lübeck handelt es sich um die hier besprochene: Link.

Auf jeden Fall hat mich das angetriggert. Also habe ich das Paper mal gelesen. Und dann noch gleich ein anderes, welches die Autoren als Quelle angeführt haben und was eigentlich noch interessanter klang. Worum geht es also?

Ein Fallbericht aus Brasilien

Gomes, I., Karmirian, K., Oliveira, J. T., Pedrosa, C. da S. G., Mendes, M. A., Rosman, F. C., Chimelli, L., & Rehen, S. (2021). SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. The Lancet Regional Health – Americas, 2, 100046. https://doi.org/10.1016/j.lana.2021.100046

Diese Arbeit ist in einem „Regional-Ableger“ von Lancet erschienen, eingereicht wurde sie im Juni 2021, veröffentlicht im August 2021. Es handelt sich um einen Fallbericht, die Autoren sind alle in Rio de Janeiro tätig, stammen überwiegend aus der Pathologie und Neuropathologie. Das Paper arbeitet den tragischen Verlauf eines 14 Monate alten Mädchens auf, welches in einem brasilianischen Krankenhaus an einer COVID-Infektion verstorben ist.

Der klinische Fall

Das Mädchen habe sich nach der Geburt bis zu einem Alter von 10 Monaten normal entwickelt. Dann sei eine Gedeihstörung aufgetreten, es kam zu Erbrechen, einer (Muskel-)Hypotonie (also keinem niedrigen Blutdruck) und zum Auftreten von epileptischen Anfällen. Eine erste stationäre Behandlung erfolgte unter der Verdachtsdiagnose eine viralen Meningitis, wobei zu diesem Zeitpunkt keine weiterführende diesbezügliche Diagnostik erfolgt sei. In den Monaten darauf, sei es zu drei weiteren stationären Aufnahmen auf Grund sehr ähnlicher Symptome gekommen. Bei der insgesamt vierten stationären Aufnahme fiel ein pathologisch verlangsamtes EEG auf, erst dann wurde eine Liquoruntersuchung durchgeführt, welche aber unauffällig verblieb. Das Mädchen wurde mit einem (aus der Sicht eines westeuropäischen Erwachsenen-Neurologen sehr veraltet anmutenden) Antiepileptikum (Phenobarbital) entlassen. Einen Monat später wurde das Mädchen wieder (nun zum fünften Mal) stationär aufgenommen. Wieder war Erbrechen das Hauptsymptom, zudem wurden unwillkürliche repetitive Bewegungen der linken Körperseite beobachtet, zudem eine Parese der Nacken- und Schultermuskulatur mit der Unfähigkeit den Kopf zu halten, einer ausgeprägten Haltungsinstabilität auf Grund der muskulären Hypotonie und dem klinischen Bild einer Pneumonie mit leicht erniedrigter Sauerstoffsättigung bei aber noch unauffälligen Entzündungsparametern. Acht Tage nach Aufnahme wurde eine Computertomographie durchgeführt, welche abnorm weite Seitenventrikel und einen erweiterten dritten Ventrikel zeigte. Die erste Verdachtsdiagnose war nun Hirndruck bei einer angenommenen Liquorabflussstörung. Zudem fand sich eine kaum abgrenzbare Mark-Rinden-Differenzierung (Link CT-Aufnahmen aus dem Paper), wie man sie bei Hypoxien sieht. Zu diesem Zeitpunkt war das Kind wach und unter Sauerstoffgabe stabil. Zwei Wochen nach stationärer Aufnahme kam es zu einer raschen Verschlechterung des Zustandes, es wurde per PCR eine SARS-CoV-2-Infektion nachgewiesen, nach anfänglich weiter stabilem Verlauf kam es dann zu einer raschen klinischen Verschlechterung mit Multiorganversagen und Sepsis, an welcher das Mädchen schlussendlich verstarb.

Die Autoren führen eine Tabelle an, in denen sie erhobene Laborparameter zu verschiedenen Zeitpunkten darstellen. Eine Synopsis der wichtigsten Parameter habe ich hier noch einmal zusammengestellt:

Normalwerte // Tage nach Aufnahme41014172325
Hb11,1-14,1 g/dl16,612,312,39,910,110,6
Thrombozyten200-550 x 103/µl304343295383393
Leukozyten6-16 x 103/µl15,720,232,717,524,635,8
Kreatinin0,3-08 mg/dl0,40,40,30,30,30,3
Harnstoff 10-50 mg/dl251427221317
CRP0-5 mg/l20,86,126,7108,1
nach: Gomes, I., Karmirian, K., Oliveira, J. T., Pedrosa, C. da S. G., Mendes, M. A., Rosman, F. C., Chimelli, L., & Rehen, S. (2021). SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. The Lancet Regional Health – Americas, 2, 100046. https://doi.org/10.1016/j.lana.2021.100046

Betrachtet man die Laborwerte, so scheint die systemische Entzündungsreaktion an Tag 10 nach stationärer Aufnahme begonnen zu haben, eine erste relevante CRP-Erhöhung ist erst eine Woche später messbar. LDH oder Ferritin als typische bei COVID-19 erhöhte Parameter wurden nicht bestimmt oder nicht berichtet.

Anderthalb Tage nach dem Versterben erfolgte eine Autopsie. Die Ergebnisse der Autopsie machen den Hauptteil des Papers aus.

Die Autopsie-Ergebnisse

Hier fasse ich die wesentlichen Ergebnisse möglichst kurz zusammen. An dem verstorbenen Kleinkind wurde eine komplette Autopsie inclusive neuropathologischer Untersuchung durchgeführt. In den Lungen zeigte sich das Vollbild einer COVID-Pneumonie mit interstitiellen Infiltraten, aber auch kleinen Lungenembolien und Einblutungen in das Lungengewebe. Es fanden sich eine Speiseröhren- und Magenschleimhautentzündung, eine Fettleber (mit 14 Monaten !?) und hier auch Lymphozyteninfiltraten, eine schwere Nekrose der gesamten Bauchspeicheldrüse und eine diffuse Nierenschädigung (auch hier mit kleinen Thromben). Das Gehirn war um ein Drittel leichter als das Normgewicht in dem Alter, die Erweiterung der Liquorräume – welche in der CT aufgefallen war- stellte sich als e vacuo-Erweiterung (also durch eine Hirnatrophie und nicht durch einen Hydrozephalus) heraus. Es fiel eine kortikale Atrophie auf, zudem ausgedehnte Nekrosen in den Temporallappen, bei denen das Hirngewebe als „extremely soft“ beschrieben wurde. Während das Kleinhirn normal erschien, imponierte die Pons atrophiert. Riechhirn und Riechnerven konnten auf Grund der Nekrosen nicht entnommen werden.

Mikroskopisch fiel neuropathologisch in vielen Regionen der Großhirnrinde eine laminare kortikale Nekrose (Link Radiopedia) auf, wie sie bei Hypoxien gesehen wird, allerdings auch ein diffuses Hirnödem und ubiquitäre Einsprossungen kleinster Gefäße mit perivaskulären Lymphozytenansammlungen. Nekrosen von Nervenzellen wurden auch in den Stammganglien und dem Thalamus beobachtet, dort teilweise schon mit einer reaktiven Gliose und mit der Eingangs erwähnten „spongiosis“, auf die aber nicht weiter eingegangen wird. Darüber hinaus fanden sich eine Entzündung der weichen Hirnhäute und eine diffuse Mikroglia-Aktivierung.

SARS-CoV-2-RNA konnte erwartungsgemäß in der Lunge nachgewiesen werden, im Gehirn im Epithel des Plexus choroideus (Link Wikipedia) und weniger in den Ventrikeln. Spike-Protein ließ sich in einzelnen Kortexzellen nachweisen, darüber hinaus aber nicht, was sich – ebenso wie die neuropathologischen Befunde der Mikrogliaaktivierung und die der lymphozytären Infiltrationen – mit den Ergebnissen anderer neuropathologischer Arbeiten, wie der aus Hamburg deckt (ich hatte das mal in dem Blogbeitrag zur Frage der Neurotropie von SARS-CoV-2 erläutert, Link). Generell ließen sich bei der Autopsie in anderen Organen deutlich weniger Viruskopien nachweisen, als in Lunge und Großhirn, dort allerdings vor allem in den Gefäßwänden des Plexus choroideus und mittleren bis kleinen Arterien:

We found that SARS-CoV-2 infection was restricted at the lumina of ChP capillaries and medium-sized blood vessels.

Die Zusammenfassung

Und hier wird es meines Erachtens wichtig für die Einordnung. Die Autoren schreiben nämlich:

The child’s brain presented severe cortical neuronal loss, macrophage activation, and reactive gliosis, which are expected in encephalopathies. The encephalopathy reported here might have been related to hypoxia, secondary to both prolonged seizures and severe pneumonitis. A putative pre-existing condition (not diagnosed in life) contributing to this clinical status cannot be ruled out. Although we cannot determine the relative contribution of SARS-CoV-2 infection to our patient’s encephalopathy, a recent study reported similar neurological complications of COVID-19 in previously healthy children, with or without co-infections.

Auf das erwähnte Paper geh ich gleich noch ein, das ist nämlich sehr interessant. Weiter schreiben die Autoren:

Therefore, it is possible that our patient’s SARS-CoV-2 infection substantially exacerbated a previously undiagnosed encephalopathy caused by a pre-existing condition

In den „Conclusions“ heißt es dann noch einmal:

The severe encephalopathy reported here could have resulted from recurrent seizures due to an undiagnosed aetiology. Despite the putative prior encephalopathy, we cannot ignore its possible exacerbation due to SARS-CoV-2 infection.

Zusammenfassend handelt es sich um einen tragischen Fall eines – so verstehe ich die klinische Schilderung zumindest – schwer kranken Kindes, welches an einer zu Lebzeiten nicht diagnostizierten Enzephalopathie unklarer Genese gelitten hat. Diese scheint sich mit dem 10. Lebensmonat manifestiert zu haben und zu den epileptischen Anfällen, der Hirnatrophie und der Bewegungsstörung beim fünften stationären Aufenthalt geführt zu haben. Dieses sehr kranke Kind ist dann an einer fulminant verlaufenden COVID-19-Erkrankung verstorben. So ist das in den Tweets und den Drukos darunter aber nicht kommuniziert worden.

Eine Kinder-Bildgebungs-Studie

Lindan, C. E., Mankad, K., Ram, D., Kociolek, L. K., Silvera, V. M., Boddaert, N., Stivaros, S. M., Palasis, S., Akhtar, S., Alden, D., Amonkar, S., Aouad, P., Aubart, M., Bacalla, J. A., Barbosa, A. A., Basmaci, R., Berteloot, L., Blauwblomme, T., Brun, G., … Vézina, G. (2021). Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study. The Lancet Child & Adolescent Health, 5(3), 167–177. https://doi.org/10.1016/S2352-4642(20)30362-X

Auf diesen Artikel verweisen die Autoren des Fallberichts mehrfach und ich fand ihn ernsthaft interessant und vorstellenswert.

Die Eckdaten

In dieser kleinen Studie wurden neuroradiologische Bilddaten von insgesamt 38 Kindern mit COVID-19-Erkrankungen und neurologischen Komplikationen systematisch ausgewertet. Die Autoren konnten mehrere Erkrankung-Kategorien herausarbeiten. So beschreiben sie

  • ADEM-ähnliche Erkrankungen in 16 Fällen
  • eine Myelitis in 8 Fällen
  • eine Radikulitis oder Hirnnervenneuritis bei 13 Patienten
  • Balkenläsionen in 7 Fällen, vor allem im Splenium (dem hinteren Anteil des Balkens, Link Wikipedia)
  • und Myositiden bei 4 Kindern
  • 34 Fälle hatten ein gutes Outcome, 4 Kinder sind jedoch an den ZNS-Komplikationen, bzw. Infektionen des ZNS verstorben

Klinische Verläufe

ADEM-ähnliche Verläufe

Das Thema ADEM (akute demyelinisierende Enzephalomyelitis) hatten wir zuletzt mehrfach, einmal als Folge der Masern-Infektion (Link) und einmal als „klassische“ Impfnebenwirkung (Link). Die in dieser Studie betrachteten ADEM-ähnlichen Erkrankungsbilder waren oft bilateral und reichten von sehr ausgedehnt bis sehr klein und dezent. Die umfangreiche Antikörpertestung im Liquor der Kinder mit ADEM-artigen Veränderungen im Gehirn blieb bei 10 Kindern unauffällig, ein Kind hatte Antikörper gegen NMDA-Rezeptoren und ein Kind Antikörper gegen MOG. Schwer verlief der Fall des Kindes mit der NMDA-Rezeptor-Enzephalitis zusätzlich zur COVID-Erkrankung. Von anderen Virusinfektionen ist die Triggerung von Autoimmunenzephalitiden bekannt, der Klassiker in der Neurologie ist die NMDA-Rezeptor-Enzephalitis nach einer Herpes-Enzephalitis (siehe z.B. Hacohen et al.).

Myelitiden

Aufmerksamen Bloglesern wird auffallen, dass die Myelitiden als zweite häufige „klassische“ Impfkomplikation gelten, nun aber auch hier als häufige Komplikation auftauchen. Die Myelitiden verliefen – wie die ADEM-Fälle – ebenfalls durchaus unterschiedlich. In einem Fall wurde eine langstreckige, schwere Myelitis berichtet, die mich eher an eine spinale Ischämie (Link Wikipedia) oder eine NMO-Spektrumerkrankung (Link Wikipedia) erinnert und die – passend zu einer spinalen Ischämie – defekthaft mit schwerem Querschnittssyndom und deutlicher Rückenmarks-Atrophie im weiteren Verlauf ablief. Ein Kind mit einer tödlich verlaufenden TBC a.e. als Sekundärinfektion (siehe unten) entwickelte eine schwere Myelitis. In den anderen Fällen handelte es sich eher um „typische“ para- und postinfektiöse Myelitiden mit eher gutartigem Verlauf.

Radikulitiden und Hirnnervenneuritiden

Und das ist dann die dritte „typische“ Impfnebenwirkung (zur Einordnung, warum das so ist, kommen wir gleich). Die Entzündung der Nervenwurzeln und der Hrinnerven verliefen mild.

Balkenläsionen

Die Balkenläsionen im Splenium scheinen von der MR-Morphologie zum Teil entzündlich vermittelt und zum Teil ischämischer Genese zu sein. Die Prognose war ingesamt günstig, die Kinder, die sich nicht komplett erholten, hatten melde Restsymptome.

Die tödlich verlaufenden Fälle

Zwei zuvor gesunde Kinder sind an einer ZNS-Tuberkulose verstorben. Dies ist sehr ungewöhnlich, die Autoren spekulieren daher darüber, dass die Infektion von Plexus choroideus und Gefäßen, die zu den Ventrikeln ziehen, eine sekundäre Einwanderung von Tuberkulose-Bakterien in das ZNS ermöglicht haben. Bei den anderen beiden Kindern führte einmal eine Varizella-Zoster-Infektion mit Enzephalopathie zur stationären Aufnahme, die Diagnose einer SARS-CoV2-Infektion wurde erst im Verlauf gestellt, es kam zu einer zusätzlichen MRSA-Sepsis (Link Wikipedia). Bei dem vierten Kind kam es zu einer bakteriellen Meningitis mit Begleitvaskulitis.

Was haben ADEM, Myelitis und Radikulitis hier zu suchen?

Es scheint, dass diese Erkrankungen besonders typische neurologische Manifestationsorte einer überschießenden Autoimmunreaktion sind. Daher sieht man sie sowohl post- und paarinfektiös, als auch nach Impfungen und daher bei Kindern mehr als bei Erwachsenen mit dem „trägeren“ und „langsameren“ Immunsystem.

Ein Fazit, bzw. drei

Die erste Botschaft muss (mal wieder) lauten: Vereinfachen und verkürzen, auch diese Artikel taugen hierfür nicht. Es ist und bleibt ein typisches Twitter-Problem, dass sowohl Zeichenbegrenzung als auch Lager-, bzw. Bubble-Bildung das Vereinfachen begünstigen.

Das zweite Fazit lautet: Artikel lesen (und nicht nur die Überschrift oder das Abstract) lohnt sich. Hier kann ich allen vor allem den zweiten Artikel empfehlen, der auch sehr schöne, einprägsame radiologische Aufnahmen enthält. Und es ist – wie eigentlich alle COIVD-Paper – ein open access-Artikel.

Und zu guter letzt: Ja, gemessen an der Zahl der vielen, vielen Infektionen verläuft COVID-19 bei vielen, vielen Kindern recht mild und harmlos (soweit wir wissen). Aber eben nicht bei allen und alleine in diesen beiden Artikeln werden Fälle von fünf Kindern geschildert, die an COVID-19, bzw. Komplikationen der COVID-Erkrankung verstorben sind. Und es wurden 34 weitere Fälle geschildert, bei denen ernsthafte – wenn auch oft gut ausheilende – neurologische Komplikationen aufgetreten sind. Das führt zu Hospitalisierung, Angst und Anspannung sowohl bei den Kindern als auch bei ihren Eltern. Berücksichtigt das bei eurer Impfentscheidung. Auch hier gilt m.E. Wut und Bockigkeit sind am Ende schlechte Ratgeber.

PS: Was es nun mit der brain spongiosis auf sich hatte, bleibt weiterhin unklar.

Wo man weiterlesen kann

Hacohen, Y., Deiva, K., Pettingill, P., Waters, P., Siddiqui, A., Chretien, P., Menson, E., Lin, J.-P., Tardieu, M., Vincent, A., & Lim, M. J. (2014). N -methyl- D -aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Movement Disorders, 29(1), 90–96. https://doi.org/10.1002/mds.25626

Gomes, I., Karmirian, K., Oliveira, J. T., Pedrosa, C. da S. G., Mendes, M. A., Rosman, F. C., Chimelli, L., & Rehen, S. (2021). SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. The Lancet Regional Health – Americas, 2, 100046. https://doi.org/10.1016/j.lana.2021.100046

Lindan, C. E., Mankad, K., Ram, D., Kociolek, L. K., Silvera, V. M., Boddaert, N., Stivaros, S. M., Palasis, S., Akhtar, S., Alden, D., Amonkar, S., Aouad, P., Aubart, M., Bacalla, J. A., Barbosa, A. A., Basmaci, R., Berteloot, L., Blauwblomme, T., Brun, G., … Vézina, G. (2021). Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study. The Lancet Child & Adolescent Health, 5(3), 167–177. https://doi.org/10.1016/S2352-4642(20)30362-X

COVID-19 als Gefäßkrankheit?

Warum schon wieder ein Corona-Beitrag?

Ja, ich hatte erst gerade geschrieben, dass so langsam Schluss mit den Corona-Beiträgen sein soll (Link) und jetzt kommt doch noch einer. Karl Lauterbach hat mal wieder getwittert und zwar das hier:

https://twitter.com/Karl_Lauterbach/status/1451293481486491654

Ein typischer Lauterbach, denn „Obwohl die Studie dies nicht zeigt legt das Ergebnis ein erhöhtes späteres Demenzrisiko nahe“ steht da geschrieben. Doch darum geht es in der Studie gar nicht. Und das triggert mich so an, dass ich jetzt doch noch mal was dazu schreiben muss.

Das Paper

Es geht um dieses Paper:

Wenzel, J., Lampe, J., Müller-Fielitz, H., Schuster, R., Zille, M., Müller, K., Krohn, M., Körbelin, J., Zhang, L., Özorhan, Ü., Neve, V., Wagner, J. U. G., Bojkova, D., Shumliakivska, M., Jiang, Y., Fähnrich, A., Ott, F., Sencio, V., Robil, C., … Schwaninger, M. (2021). The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 394. https://doi.org/10.1038/s41593-021-00926-1

Die Autoren haben selber einen kleinen Twitter-Thread hierzu erstellt:

Und Franziska Briest hat auch schon eine gute Zusammenfassung veröffentlicht:

https://twitter.com/F_I_Briest/status/1451511765959913474

Ich habe hier ein paar mehr Zeichen zur Verfügung, daher versuche ich auch noch mal mein Glück beim Erklären des Papers, denn es berührt eine ganz spannende Frage, nämlich die, ob die Behauptung, die man oft so lapidar hört „COVID-19 ist eine Erkrankung der kleinen Gefäße“ stimmt. Hierzu gibt es nämlich bislang unterschiedliche Auffassungen und auch hochrangig publizierte Zweifel (z.B. McCracken et al.). Und die Arbeit schneidet am Rand die ebenso wichtige Frage an, sind die Erkenntnisse der Autoren COVID-exklusiv oder werden hier allgemeingültige Mechanismen einer Virusinfektion aufgedeckt.

Das Paper ist lang (in der pdf-Version mit Methodik-Anhang 29 Seiten) und komplex, da es eine Arbeit aus der Grundlagenforschung ist, bei der es um molekularbiologische Mechanismen bei einer COVID-19-Infektion geht. Also keine leichte Kost und damit eigentlich auch nur bedingt Twitter-kompatibel.

Die Fragestellung

Grundlage der Studie sind Erkenntnisse, dass bei schwer betroffenen COVID-19-Patienten vermehrt ischämische Schlaganfälle, sowie epileptische Anfälle und Enzephalopathien (oft in der Form eines Delirs) – in der akuten und post-akuten Phase – auftreten. Zudem nehmen die Autoren MRT-Aufnahmen von COVID-19-Erkrankten, die Mikroangiopathie-, bzw. Vaskulitis-ähnliche Läsionen zeigten als Grundlage ihrer Überlegungen.

Methodik der Studie

Ist COVID eine Kapillarerkrankung?

Die Autoren haben sich ganz verschiedener Indizien bedient, sie haben Gehirn-Proben aus Autopsiestudien von 17 an COVID-19-Verstorbenen untersucht und dies mit einer Kontrollgruppe von 23 aus anderen Gründen verstorbener Probanden und zwei Tiermodellen (Maus und Hamster) verglichen. In den Proben Verstorbener suchten sie nach Resten von kleinen Gefäßen, vornehmlich Kapillaren und fanden dünne röhrenartige Strukturen, sogenannte „string vessels“, bei denen offenbar nur noch die Basalmembran (Link Wikipedia) übrig geblieben, das Endothel (Link Wikipedia) hingegen untergegangen war.

Bei den COVID-Toten fanden sich deutlich mehr string vessels als in der Kontrollgruppe, auch im Vergleich zu beatmeten, nicht-COVID-Patienten, so dass die Autoren eine systemische Hypoxie als Grund des Kapillarverlustes unwahrscheinlich ansehen. Zur Bestätigung ihrer Hypothese untersuchten sie das Auftreten eines Proteins, welches bei einem Zelltod (Apoptose) vermehrt auftritt, der Caspase-3. Dieses fand sich ingesamt selten, aber öfter bei an COVID-Verstorbenen als in der Kontrollgruppe. Auch bei mit COVID-infizierten Hamstern konnten vermehrte string vessels ab dem vierten Tag nach Infektion nachgewiesen werden, ebenso bei transgenen Mäusen.

In einem nächsten Schritt haben die Autoren untersucht, ob SARS-CoV-2 überhaupt in der Lage ist, Endothelzellen im Gehirn zu infizieren. Dafür färbten sie verschiedene – in der Vergangenheit mit einer SARS-CoV-2-Infektion assoziierte – Oberflächeneiweiße im Mausmodell ein, nämlich ACE2 (siehe auch Blogbeitrag zum Thema COVID und Neurodegeneration), Neuropilin-1 (was als Nrp1 abgekürzt wird) und Basigin (BSG). ACE-2 wurde hauptsächlich vom die Kapillaren umgebenden Bindegewebe exprimiert und eher wenig von den Kapillaren, anders Nrp1 und BSG, die sich vor allem in den Endothelzellen fanden. Dies war auch im Hirngewebe Verstorbener so. Allerdings hat dieses Vorgehen einen Schönheitsfehler, da ACE-2 mit versiegendem Blutstrom (und das ist sowohl bei toten Mäusen, als auch toten Menschen so) rasch weniger exprimiert wird. Glich man das mit einem Labortrick aus, konnte man aber ACE-2 auf Endothelzellen und sogar Spike-Protein in den Zellen nachweisen.

Was macht SARS-CoV-2 mit den infizierten Zellen?

Um zu Überleben und vervielfältigt zu werden, kann SARS-CoV-2 die infizierten Zellen verändern („manipulieren“). Dafür spaltet es ein Protein mit dem schönen Namen NEMO (was für nuclear factor (NF)-κB essential modulator steht). NEMO aktiviert dem Namen nach NF-κB (Link Wikipedia), was wiederum eines der zentralen Proteine der zellulären Immunantwort, von und für Entstehungen von Entzündungen und der Einleitung von Apoptose-Vorgängen. SARS-CoV-2 bildet zwei Schneideproteine, sogenannte Proteasen, u.a. Mpro. Mpro kann NEMO zerschneiden, so dass es nicht mehr funktioniert. In der Folge fehlt eine IL-1-vermittelte Entzündungsreaktion, so dass das Virus nicht bekämpft wird. Dummerweise ist NEMO auch für die Funktionsfähigkeit von Endothelzellen verantwortlich. Zellen, in den mit Mpro NEMO zerschnitten wurde, gingen öfter in den Zelltod, als normal. Kapillaren scheinen dies wiederum öfters als andere Zellen zu machen. Durch den Tod vieler Kapillaren wurde im Tiermodell dann die Blut-Hirn-Schranke durchlässiger. Die Dichte der Perizyten veränderte sich nur leicht, Mikroglia hingegen wurde aktiviert. In ihren Untersuchungen konnten die Autoren auch erhöhte Konzentrationen von saurem Gliafaserprotein (GFAP) nachweisen, was kongruent zu anderen Arbeiten ist, wie hier im Long Covid-Beitrag erwähnt.

Ein therapeutischer Ansatz

In einem letzten Schritt untersuchten die Autoren Wege, diesen Prozess aufzuhalten und stießen auf ein weiteres Eiweiß mit dem Namen RIPK3. RIPK3 spielt ebenfalls im Zusammenspiel mit NF-κB eine Rolle in der Induktion von Apoptose-Vorgängen. In einem Hamstermodell führte ein RIPK-3-Mangel zu einer Rückbildung der oben beschriebenen Auffälligkeiten und verbesserte auch das Überleben der Hamster. Allerdings können RIPK3-Inhibitoren selber Zelltode auslösen, so dass man sich zur Untersuchung eines vorgelagerten Signalweges mit einem Protein namens RIPK1 zuwandte, was unkomplizierter beeinflussbar ist.

Was bedeutet das?

Die Autoren sehen in ihrer Studie einen Ansatz zur Erklärung vaskulärer Komplikationen bei COVID-Erkrankungen, aber auch von Long Covid-Beschwerden. Das Außer-Kraft-Setzen von NEMO ist für verschiedene andere Coronaviren beschrieben, aber auch für Influenza-Viren (siehe Häfner und Wei et al.) und für onkologische Erkrankungen.

Nach meinem Dafürhalten spricht das dafür, dass der beschriebene Pathomechanismus zumindest in dem Teil der ohne ACE-2-Rezeptor auskommt eher ein genereller Mechanismus sein dürfte, als ein COVID-spezifischer.

Dennoch können die Autoren den Pathomechanismus kleinteilig beschreiben und belegen und zeigen zudem mit RIPK1-Antagonisten einen Ansatz einer spezifischen Anti-COVID-Behandlung.

Wo man weiterlesen kann

McCracken, I. R., Saginc, G., He, L., Huseynov, A., Daniels, A., Fletcher, S., Peghaire, C., Kalna, V., Andaloussi-Mäe, M., Muhl, L., Craig, N. M., Griffiths, S. J., Haas, J. G., Tait-Burkard, C., Lendahl, U., Birdsey, G. M., Betsholtz, C., Noseda, M., Baker, A. H., & Randi, A. M. (2021). Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation, 143(8), 865–868. https://doi.org/10.1161/CIRCULATIONAHA.120.052824

Häfner, S. (2021). Binding Nemo. Microbes and Infection, 23(1), 104770. https://doi.org/10.1016/j.micinf.2020.10.006

Wei, F., Jiang, Z., Sun, H., Pu, J., Sun, Y., Wang, M., Tong, Q., Bi, Y., Ma, X., Gao, G. F., & Liu, J. (2019). Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling. PLOS Pathogens, 15(10), e1008062. https://doi.org/10.1371/journal.ppat.1008062

Wenzel, J., Lampe, J., Müller-Fielitz, H., Schuster, R., Zille, M., Müller, K., Krohn, M., Körbelin, J., Zhang, L., Özorhan, Ü., Neve, V., Wagner, J. U. G., Bojkova, D., Shumliakivska, M., Jiang, Y., Fähnrich, A., Ott, F., Sencio, V., Robil, C., … Schwaninger, M. (2021). The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 394. https://doi.org/10.1038/s41593-021-00926-1

Subakute sklerosierende Panenzephalitis (SSPE)

Vorweg

So langsam möchte ich im Blog wieder von den Corona-Beiträgen wegkommen und perspektivisch zu den eigentlichen brainpainblog-Themen zurückkehren. Den Themenkomplex Masern und die Komplikationen einer Masern-Infektion finde ich allerdings in sofern interessant, da bei der ganzen Corona-Diskussion immer wieder neben Polio der Vergleich zur SSPE als Masern-Spätkomplikation gezogen wird. Nur was ist das eigentlich? Dafür müssen wir zunächst einmal in die Tiefen der Mikrobiologie und Pädiatrie eintauchen:

Die Masern: Kleiner Crashkurs

Das Masern-Virus

Auch bei der Herkunft des Masern-Virus geht man von einem eigentlich Tiere infizierenden Virus aus, welches allerdings schon frühgeschichtlich den Sprung auf den Menschen geschafft hat, vermutlich im Rahmen der Entwicklung von Viehhaltung. Anders als Corona-Viren hat das Masern-Virus keine feste Form, sondern ist relativ variabel. Auch es hat eine Hülle, die vom M-Protein gebildet wird und in dem mehrere andere – für die Infektion wichtige – Proteine stecken: Das Hämagglutinin, was in der Regel mit H abgekürzt wird und das F-Glykoprotein. Im Inneren der Hülle liegt die Virus-RNA. Übertragen wird das Masern-Virus vor allem durch Tröpfchen-Infektionen. Zunächst infiziert es Abwehrzellen, in dem das H-Protein an einen Oberflächenfaktor von Immunzellen (CD150) bindet. In den Zellen der Immunabwehr vermehrt sich das Virus und gelangt über die Blutbahn auch in die Atemwege. Dort dockt sich das Masern-Virus an das PRLV4-Protein an über dass das Masern-Virus die Zellen später auch wieder verlassen kann. Bei der Infektion der Immunzellen wird die Bildung verschiedener Zytokine induziert, unter anderem IL-6 und IL-8, begleitend wird über verschiedene Virus-Proteine eine wirksame rasche Immunantwort verzögert. Damit gewinnt das Virus Zeit, um sich im Körper vermehren zu können (das Virus lässt sich auch bei Gesunden noch bis zu 90 Tage nach Infektion in Lymphozyten nachweisen). Schlussendlich wird das Virus dann aber von der zellulären (also T-Zell-vermittelten) Immunsystem-Komponente bekämpft und eliminiert, Antikörper bilden sich erst mit Entwicklung des Hautausschlages aus.

Die Masern-Erkrankung

Masern gelten als eine der klassischen Kinderkrankheiten. Masern sind extrem ansteckend, sogar die ansteckendste derzeit bekannte Infektionskrankheit mit einem R0-Wert von 12-18 (Link Wikipedia, der R0 von COVID-19 beträgt 1,4 bis 5,7). Die Inkubationszeit liegt – auch durch die Fähigkeiten des Virus die Immunantwort zu unterdrücken – bei 10-14 Tagen. Dann entwickeln sich zunächst unspezifische Erkältungssymptome (durch die Infektion der oberen Atemwege), wie Husten, Schnupfen, Bindehautentzündungen und Fieber. Als nächstes Treten an der Mundschleimhaut kleine weiße Papeln auf, die berühmten Koplik-Flecken, die alle Mediziner mal in irgendwelchen Staatsexamens-Prüfungen per Multiple Choice ankreuzen durften. Erst 1-2 Tage später entwickelt sich das Masern-Exanthem, was typischerweise hinter den Ohren beginnt und sich von dort über den Körper ausbreitet. Dieses ist – wie es oft heißt – kirschrot mit kleinen Papeln drin, kann stippchenartig einbluten und verblasst nach ungefähr drei Tagen. Die meisten Infizierten erholen sich innerhalb von sieben Tagen. Als Hauptkomplikation in der akuten Masern-Infektion gilt die Masern-Pneumonie mit einer Häufigkeit von ca. 5%, diese ist auch die häufigste Todesursache. Generell nimmt man eine Letalität von 0,2% an, also 2 von 1.000 Infizierten versterben. Seltenere Komplikationen der akuten Erkrankung sind Durchfälle und Mittelohrentzündungen.

Neurologische Komplikationen durch Masern-Infektionen

Es gibt insgesamt drei neurologische Erkrankungen, die nach einer Masern-Infektion kausal auftreten können und welche die Hauptmotivation für die Impfstoffentwicklung waren: Die ADEM, die Masern-Einschlusskörperchen-Enzephalitis und die SSPE.

Akute demyelinisierende Enzephalomyelitis (ADEM)

Die ADEM ist neben der Masern-Einschlusskörperchen-Enzephalitis die häufigste neurologische Komplikation nach einer Masern-Infektion mit einer Häufigkeit von 0,1% aller Infizierten. Bei der ADEM handelt es sich um einen autoimmun vermittelten Prozess, der wenige Tage bis maximal vier Wochen nach der Infektion auftreten kann und den man in der Neurologie auch nach anderen Erkrankungen und auch nach Impfungen kennt. Eine ADEM nach Masern-Impfung gibt es demnach genauso, allerdings deutlich seltener, man nimmt eine Häufigkeit von 0,25/1.000.000 Impfungen an. Bei der ADEM kommt es – ähnlich zur Multiplen Sklerose – zu einer Entzündung des Marklagers im Gehirn, allerdings deutlich großflächiger und eben monophasisch und nicht wie bei der MS wiederkehrend. Abhängig von den Orten der Infektion kommt es zu neurologischen Ausfällen, zudem werden enzephalopathische Symptome wie Bewusstseinsstörungen und epileptische Anfälle beschrieben.

Bei der ADEM lässt sich kein Masern-Virus im Hirngewebe bei Hirnbiopsien oder im Liquor nachweisen, sie ist als überschießende Immunreaktion zu verstehen. Behandelt wird die ADEM wie andere autoimmun-vermittelte ZNS-Entzündungen auch in erster Linie mit Steroiden. Die Letalität der ADEM liegt unbehandelt bei ungefähr 30%, behandelt deutlich niedriger. Die Prognose gilt gemeinhin als gut, wenn auch durchaus neurologische Residualsymptome nach durchgemachter ADEM beschrieben werden. Die MRT-Auffälligkeiten bilden sich meistens innerhalb von drei Monaten zurück.

Masern-Einschlusskörperchen-Enzephalitis (MIBE)

Hier beginnen die gruseligen Erkrankungen. Die MIBE ist neben der ADEM die zweithäufigste neurologische Masern-Komplikation mit einer Häufigkeit von 0,1-0,3% aller Infizierten. Bei der MIBE kommt es zu einer Viruspersistenz in Nerven- und Gliazellen, und zwar in den namensgebenden Einschlusskörperchen. Aus Biopsien weiß man, dass hier das Virus aus der Primärinfektion einfach im Gehirn zu persistieren scheint. Die MIBE tritt zwischen vier Wochen und neun Monaten nach Infektion auf und ist extrem stark mit Immunschwächen, wie durch Leukämien oder HIV-Infektionen assoziiert. Die Symptomatik ist oft eher unspezifisch, beginnt mit Verhaltensauffälligkeiten, Unruhezuständen, vermehrter Reizbarkeit und im Verlauf dann auch Bewusstseinsstörungen. Für die MIBE sind Letalitätsraten bis 50% der Betroffenen beschrieben. Eine kausale Therapie existiert nicht, es gibt (verzweifelte) Therapieversuche mit hochdosiertem Vitamin A, die – so scheint es zumindest – wenn aber als Post-Expositions-Prophylaxe bei nicht geimpften Kontaktpersonen (Kinder unter 12 Monaten) eines Masern-Ausbruchs wirksam sind. Zudem gibt es es einzelne Fallberichte, die eine erfolgreiche Behandlung mit Ribavirin beschreiben.

Subakute sklerosierende Panenzephalitis

Kommen wir zum eigentlichen Aufhänger des Beitrags. Die SSPE ist die seltenste Komplikation, man geht heutzutage von 3-11 Fällen/100.000 Infizierten aus. Die Häufigkeit hat mit steigender Impfquote stark nachgelassen, so finden sich aus den späten 1980er und frühen 1990er Jahren auch Häufigkeitsangaben von 1:1.367 bei unter 5-Jährigen und für Kleinkinder unter einem Jahr sogar von 1:6.09, nach einer anderen Arbeit aus Deutschland bei unter 5-Jährigen zwischen 1:1.700 bis 1:3.300. Man nimmt an, dass dies daran liegt, dass bei hohen Impfquoten um 95% Kleinkinder – die sonst die höchste Inzidenz haben (im Mittleren Osten zum Beispiel weiterhin 360/100.000 Infizierte) – durch die zumindest einigermaßen funktionierende Herdenimmunität geschützt sind. Auch nach Masern-Impfungen kann vermutlich eine SSPE auftreten, allerdings deutlich seltener. Aktuell wird bei einer Impfung mit Dreifachimpfstoffen (Masern, Mumps, Röteln) oder Vierfachimpfstoffen (Masern, Mumps, Röteln, Windpocken) eine Rate von 1,4 Fällen auf 1.000.000 Impfungen angenommen (es gibt aber auch Arbeiten, die dies auf Impfversager zurückführen). Die SSPE wurde erstmals 1934 beschrieben, Jungen sind häufiger betroffen als Mädchen. Es sind mehrere Krankheitsstadien beschrieben, die SSPE tritt in der Regel frühestens 2 Jahre nach der Masern-Infektion auf, es sind aber auch Fälle beschrieben, bei der die SSPE mehr als 20 Jahre nach Primärinfektion begann. Die SSPE führt in ungefähr 95% der Fälle zum Tod der Betroffenen.

Pathophysiologie und Liquorbefunde

Aus Autopsie-Studien an SSPE Verstorbener weiß man mittlerweile, dass es bei der SSPE offenbar zu einer Viruspersistenz und -mutation im ZNS kommt mit einer schleichende Infektion des ganzen Gehirns mit dem mutierten Virus. Die Invasion von Nervenzellen scheint über das F-Protein des Masernvirus und CD46 als Oberflächenprotein auf den Nervenzellen zu geschehen. Um die infizierten Zellen herum kommt es zu einer starken und destruierenden Entzündungsreaktion. Offenbar führt diese Entzündungsreaktion dazu, dass das Virus nicht mehr alle Proteine ausbildet und sich in der Folge verändert. Hauptrisikofaktor für dieses Geschehen scheint ein nicht ausgereiftes Immunsystem zu sein, vor allem was die zelluläre Immunantwort betrifft, was die starke Altersabhängigkeit der Erkrankung erklären würde.

Im Liquor lässt sich bei der SSPE in der Regel ein entzündliches Liquorsyndrom und eine extrem hohe intrathekale (vergleiche den Beitrag hier) Antikörper-Produktion von Masern-IgG nachweisen (AK-Titer zwischen 1:40 und 1:1280, Antikörper-Spezifitäts-Index zwischen 5:1 bis 40:1), was man sich durch die jahrelange Virus-Persistenz im Nervensystem mit entsprechender Triggerung des Immunsystems erklärt. In neueren Arbeiten werden auch eine hohe Viruslast in PCR-Tests aus Liquores von SSPE-Betroffenen beschrieben, dieses Verfahren gibt es halt noch nicht so lang, so dass viele ältere Arbeiten vor allem die Antikörper-Titer (und die heute völlig verlassenen Viruskulturen) thematisieren.

EEG und MRT

In bis zu gut 80% der Fälle lassen sich im EEG bilaterale periodische Muster aus delta-Wellen und scharfen Wellen nachweisen, welche alle 2 bis 20 Sekunden auftreten, zunächst vor allem im Schlaf und triggerbar durch Außenreize. Man nimmt an, dass die periodischen Entladungen einer neuronale Übererregbarkeit anzeigen und auch für die häufig auftretenden Myoklonien verantwortlich sind.

In der MRT zeigen sich zunächst kortikale und juxtakortikale T2-hyperintense Läsionen, bevor im Krankheitsverlauf flächige „Sklerosen“ vor allem im hinteren periventrikulären Marklager entstehen und im Verlauf auch den Balken und den Thalamus, sowie das Corpus callosum betreffen.

Krankheitsstadien

Man nimmt gemeinhin sechs Krankheitsstadien an, wobei diese von ungefähr 80% der SSPE-Erkrankten durchlaufen werden:

  1. Die Krankheit beginnt mit diskreten neuropsychologischen Defiziten, wie Hyperaktivität, relativ subtilen Sprachentwicklungsstörungen oder schlechteren schulischen Leistungen. Sehr selten kommt es frühzeitig zu epileptischen Anfällen.
  2. Als zweites Krankheitsstadium gilt die Exazerbation der geschilderten Beschwerden, so dass meistens hier die Diagnosestellung erfolgt.
  3. Im dritten Krankheitsstadium kommt es zu Bewegungsstörungen mit stereotypen Bewegungsabläufen, Tremor, aber auch zu Koordinationsstörungen mit einer deutlichen Ataxie.
  4. Es treten zunehmend Bewusstseinsstörungen auf, bis hin zum Koma.
  5. In gut der Hälfte der Fälle kommt es zu einer Besserung der Beschwerden, diese Phase kann mehrere Jahre anhalten.
  6. Es kommt zu einem Wiederaufflammen der Beschwerden, im Durchschnitt versterben die Patienten drei Jahre nach Symptombeginn.

Bei ca. 20% der Betroffenen kommt es eher zu vier Erkrankungsstadien mit deutlich rascherem Tod nach ungefähr einem Jahr nach Symptombeginn.

Therapeutische Ansätze

Es gibt auch weiterhin keine etablierte, evidenzbasierte und wirksame Therapie der SSPE. Mit verschiedenen – experimentellen – Therapieverfahren lässt sich der SSPE-Verlauf bei bis zu einem Drittel der Betroffenen verlangsamen. Die meisten „guten“ Therapieergebnisse wurden aus einer Kombination mit einmal wöchentlich intrathekal injiziertem Interferon-alpha und der Gabe von Isoprinosin erzielt. Isoprinosin soll die Virusreplikation verlangsamen. Weniger überzeugende Ergebnisse soll es für Ribavirin geben, was als Nukleotidanalogon ebenfalls die Virusreplikation stört.

Masern und COVID-19

Ich halte das kurz, da der Vergleich irgendwie Käse ist, wie man hoffentlich nach der Lektüre bis hier gemerkt hat. Trotzdem versuche ich mal die häufigsten Fragen oder Vermutungen zu beantworten.

Sind Long Covid und SSPE das selbe oder etwas ähnliches?

Nein, nach allem, was wir wissen, entsteht ein großer Teil der postinfektiösen Erschöpfungssyndrome durch verschiedene autoimmun vermittelte Prozesse, wie man auch hier im Long Covid-Pathogenese-Beitrag nachlesen kann. Bei besonders lang anhaltenden Long Covid-Beschwerden scheinen zudem biopsychosoziale Gründe eine wichtige Rolle zu spielen. Die SSPE ist eine Gehirninfektion durch ein im ZNS persistierendes und mutiertes Masern-Virus. Es gibt nur ganz wenige Einzelfallberichte, die bei Menschen mit Long Covid SARS-CoV-2-RNA im Liquor und damit im ZNS nachweisen konnten, zum Beispiel die Veröffentlichung von Viszlayová et al., über die man sicherlich trefflich streiten kann.

Kann man eine SSPE-ähnliche Erkrankung bei SARS-CoV-2 ausschließen?

Nein, in der Medizin kann man nie irgendetwas ausschließen. Wir kennen aber Coronaviren sowohl beim Menschen, als auch bei Tieren seit Jahren. Beim Menschen sind – auch und insbesondere bei der SARS-1- und MERS-Epidemie derartige Erkrankungen nicht beschrieben worden, diese Epidemien liegen nun knapp 20, bzw. knapp 10 Jahre zurück, so dass man analog zur SSPE „so langsam“ Fälle erwarten würde. Bei Tieren hatte Christian Drosten in der Coronavirus-Podcast-Folge 99 (Link Podcast, Link Transkript) von der felinen infektiösen Peritonitis, bei der bestimmte mutierte Katzen-Coronaviren häufig tödlich verlaufende Bauchfellentzündungen verursachen gesprochen. Hier ein tiermedizinischer Artikel hierzu: Link. Dies mag etwas an die SSPE erinnern, allerdings gibt es bei der felinen infektiösen Peritonitis keine so langen Latenzen zwischen Infektion und Erkrankungsausbruch, wie bei der SSPE.

Wo man weiterlesen kann

Gutierrez, J., Issacson, R. S., & Koppel, B. S. (2010). Subacute sclerosing panencephalitis: an update. Developmental Medicine & Child Neurology, 52(10), 901–907. https://doi.org/10.1111/j.1469-8749.2010.03717.x

Weber, T. (2018). Masern – Warum ist die Impfung notwendig und wie gehe ich mit Impfgegnern um? Aktuelle Neurologie, 45(09), 672–689. https://doi.org/10.1055/a-0681-9696

Literaturangaben (keine Weiterlese-Tips)

Viszlayová, D., Sojka, M., Dobrodenková, S., Szabó, S., Bilec, O., Turzová, M., Ďurina, J., Baloghová, B., Borbély, Z., & Kršák, M. (2021). SARS-CoV-2 RNA in the Cerebrospinal Fluid of a Patient with Long COVID. Therapeutic Advances in Infectious Disease, 8, 204993612110485. https://doi.org/10.1177/20499361211048572

Kremendahl, J. (2014). Feline infektiöse Peritonitis – ein aktueller Überblick. Kleintier Konkret, 17(02), 10–14. https://doi.org/10.1055/s-0033-1361536

SARS-CoV-2 und Neurotropie: Mein Fazit

In Teil 1 der Reihe ging es um die Grundlagen zum Thema Neurotropie von SARS-CoV-2 und um die Frage, wie das Virus überhaupt ins ZNS kommen und wie man es dort nachweisen kann. In Teil 2 bin ich dem Thema nachgegangen, ob und wie SARS-CoV-2 vielleicht Trigger von Neurodegeneration sein kann. Ich hatte mich in den ersten beiden Teilen der Reihe mit Wertungen und Einsortierungen von Sachverhalten sehr zurückgehalten. Das will ich jetzt hier tun und wenn Ihr das anders seht, dürft Ihr gern Teil 1 und 2 lesen und Euch Eure eigene Meinung bilden und diese vertreten.

Ich möchte im wesentlichen drei Fragen für mich beantworten, legen wir also los:

Was sind Besonderheiten von SARS-CoV-2 und wo decken wir gerade allgemeingültige Mechanismen auf?

Das ist für mich eine sehr spannende Frage, die ich ja schon mehrfach, u.a. kurz auf der Startseite, skizziert habe. Der Trend in den populärwissenschaftlichen Medien geht sehr zur Attribuierung von vermeintlichen exklusiven Mechanismen von SARS-CoV-2. Drama und Alarm verkaufen sich halt besser. Der Trend in den wissenschaftlichen Papern aber auch, aber das muss man etwas relativieren. Jeder, der regelmäßig Paper liest kennt das Phänomen, dass die Ergebnisse im Abstract und in der Diskussion am Ende des Beitrags in der Regel prägnant bis dramatisierend dargestellt werden. Das ist ja auch kein Wunder, weil wenn man schreiben würde: Ja, unsere Forschungsergebnisse sind nicht so berauschend, die Datenlage dünn und so richtig beweisen können wir unsere Arbeitshypothese auch nicht, würde es schwer mit der Veröffentlichung. Deshalb sind ja oft die Absätze über die Limitationen einer Studie viel interessanter als die (vermeintlich) eindeutigen und überzeugend dargestellten Studienergebnisse. Ein Beispiel hierfür kann die im zweiten Teil erwähnte FDG-PET-Studie bei sieben Kindern sein (Morand et al.), bei der nur bei dreien überhaupt ein positiver COVID-Nachweis vorlag, so dass die durchaus berechtigte Frage gestellt werden kann, was die Arbeit überhaupt aussagen kann.

Wenn ich das richtig sehe, dann gibt es einen Mechanismus, der sehr exklusiv für SARS-CoV-2 (und für SARS-1, nicht aber für andere Corona-Viren und auch nicht für andere Atemwegserkrankungs-Viren) ist und das ist die Bindung an ACE-2 in menschlichen Zellen. Über diesen Mechanismus lassen sich nahezu alle Krankheitsmanifestationen erklären, die wir bei COVID-19 sehen.

Und wenn ich es auch richtig sehe, dann gibt es ganz viele Dinge, die überhaupt nicht exklusiv für SARS-CoV-2 sind, weil es andere Viren und v.a. andere Atemwegserkrankungs-Viren auch genau so machen: Die Infektion des ZNS über die Riechzellen, die Aktivierung von Mikroglia und kognitive Defizite nach der Infektion. Viele Viren stehen seit Jahren, und Influenza seit eigentlich einem Jahrhundert in Verdacht (vgl. hier) neurodegenerative Erkrankungen auslösen oder triggern zu können.

Aktuell werden mit riesigem personellen und finanziellen Aufwand Dinge beleuchtet, die vermutlich eher allgemeingültige Mechanismen darstellen dürften. Und es werden Dinge untersucht, die bislang so noch niemand untersucht hat. Studien wie die aus dem UKE zu kognitiven Defiziten auch nach leichten COVID-Verläufen (Woo et al.) gibt es meines Wissens nicht (bzw. in dieser Qualität nicht) zu anderen häufigen Infektionserkrankungen. Und Studien wie die UK Biobank-Studie (Douaud et al.) erst Recht nicht.

Sollten uns die Erkenntnisse besorgen?

Ich denke nicht. Und zwar aus Gründen. Es werden ja im Endeffekt zwei Hauptsorgen immer wieder thematisiert: Die Triggerung von neurodegenerativen Prozessen und eine Neuroinvasion mit Spätschäden ähnlich Polio oder der SSPE bei Masern.

Bei dem Thema neurodegenerative Erkrankungen nach Infektion muss man den Satz von gerade noch mal betonen: Bei der Influenza vermuten wir seit der spanischen Grippe, dass Influenza Parkinson-Erkrankungen auslösen kann. Gestört hat es uns nur nie. Und ganz viele, die das Thema Neurodegeneration durch SARS-CoV-2 jetzt immer und immer wieder laut wiederholen haben sich bis vor zwei Jahren nie gegen Grippe impfen lassen, „weil das ja nur der Pharma-Industrie nützt“. Dazu kommt, dass sich hier seit Jahren bis Jahrzehnten wissenschaftlich nichts tut. Gerade bei Parkinson mit dem Beginn der Neurodegeneration im Riechhirn und im Darm-Nerven-System ist ein auslösender Umweltfaktor, den wir einatmen oder runterschlucken extrem wahrscheinlich, viel wahrscheinlicher als bei der Ausbreitungsmorphologie von Tau und ß-Amyloid bei der Alzheimer-Demenz. Nur, wir finden diesen Umweltfaktor bislang nicht (vermutlich sind es aber auch mehrere). Auch die Viren der Herpes-Gruppe stehen seit Jahrzehnten in Verdacht an Neurodegeneration beteiligt zu sein. Und die sind wirklich neurotrop, neuroinvasiv und neuropathogen und dazu noch DNA-Viren, die sogar unser Erbgut verändern. Aber bei EBV haben wir eine Durchsuchung (in diesem Kontext wäre der Begriff richtig benutzt) von 80-95% bei jungen Erwachsenen, bei VZV von 95%, bei HSV von 90%. Das macht die kausale Zuordnung zu den ebenfalls häufigen, aber nicht derart häufigen neurodegenerativen Erkrankungen schwer. Wenn uns das alles gar nicht stört bislang – und ich kann den Gedanken nachvollziehen, da wir uns eh alle mit diesen Viren infizieren – warum sollten wir dann bei COVID-19 anders reagieren?

Interessant ist auch die Sorge vor COVID-Spätschäden analog zu Polio oder der SSPE nach Maserninfektion. Im Gegensatz zu diesen Erkrankungen gelingt bei COVID-19 der PCR-Nachweis im Liquor nur in ca. 6% und ein spezifischer intrathekaler Antikörper-Nachweis bei 23% der Infizierten. Und in erster Linie kann dann Antikörper oder Virus-RNA nachgewiesen werden, wenn die Patienten einen schweren Krankheitsverlauf mit ernsthaften neurologischen Komplikationen erleiden. Bei einer mild verlaufenden COVID-19-Infektion ohne neurologische Komplikationen gibt es so gut wie keinen reproduzierbaren COVID-Nachweis im Liquor. Dass ein nicht mehr nachweisbares Virus dann spezifische Spätschäden machen soll, auch nach leichten Krankheitsverläufen, ist nicht plausibel und es ist bei den zitierten anderen Krankheiten eben auch nicht so.

Was erhoffe ich mir von der COVID-Forschung?

Ich persönlich sehe die Chance durch den unglaublichen Fokus auf COVID-19 und seine Folgen bislang un- oder nur bruchstückhaft verstandene allgemeingültige Krankheitsmechanismen von Infektionskrankheiten entschlüsseln zu können, beim Thema Neurodegeneration ihren Einfluss auf die Kognition und vielleicht ja wirklich auch mal auf das Thema Triggerung neurodegenerativer Prozesse. Und beim Long Covid-Syndrom Licht in das Thema chronisches Erschöpfungssyndrom zu bekommen, denn da sind der aktuelle Wissenstand und die verhärteten Fronten zwischen CSF-Befürwortern und -Skeptikern eine Katastrophe. Gelänge das, wären das extrem große Errungenschaften.

Literaturangaben

Morand, A., Campion, J. Y., Lepine, A., Bosdure, E., Luciani, L., Cammilleri, S., Chabrol, B., & Guedj, E. (2021). Similar patterns of 18F-FDG brain PET hypometabolism in paediatric and adult patients with long COVID: a paediatric case series. European Journal of Nuclear Medicine and Molecular Imaging, 0123456789. https://doi.org/10.1007/s00259-021-05528-4

Woo, M. S., Malsy, J., Pöttgen, J., Seddiq Zai, S., Ufer, F., Hadjilaou, A., Schmiedel, S., Addo, M. M., Gerloff, C., Heesen, C., Schulze Zur Wiesch, J., & Friese, M. A. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications, 2(2), 1–9. https://doi.org/10.1093/braincomms/fcaa205

Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., Lange, F., Andersson, J. L. R., Griffanti, L., Duff, E., Jbabdi, S., Taschler, B., Winkler, A., Nichols, T. E., Collins, R., Matthews, P. M., Allen, N., Miller, K. L., & Smith, S. M. (2021). Brain imaging before and after COVID-19 in UK Biobank. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.06.11.21258690

Was man über Neurotropie von SARS-CoV-2 wissen sollte

Mechanismen der Neurotropie von SARS-CoV-2

Wie neurotrop ist SARS-CoV-2 eigentlich?

In der Vergangenheit hatte ich Diskussionen mitbekommen (und mich auch in welche verstrickt), on SARS-CoV-2 nun total, nicht sonderlich oder nur ein bisschen neurotrop sei. Aber eigentlich ist das eine total behämmerte Frage. Wir kennen Viren, die hauptsächlich das Nervensystem infizieren und dort persistieren, wie die Herpes-Viren, wir kennen Viren, die ausschließlich das Nervensystem befallen, wie das JC-Virus und wir kennen die große Gruppe der Viren, die relativ wahllos Atemwegs-Schleimhaut, Lungen, Magen-Darm-Schleimhaut und auch das ZNS infizieren können, wie die meisten Atemwegserkrankungs-Viren und Gastroenteritis-Viren. Und in diese Gruppe gehören auch die Coronaviren und damit auch SARS-CoV-2.

Alle in der Neurologie Tätigen kennen die typischen Fälle (vermeintlich) viraler Meningitiden und Enzephalitiden, bei denen nie ein Erregernachweis gelingt und man immer heilfroh ist, wenn die Patienten dann Kinder im Kita- oder Grundschulalter zu Hause haben, die „auch gerade einen Infekt“ hatten. Und ja, manchmal gelingt uns der Nachweis von Entero- oder Adenoviren (und ganz selten von Coxsackie-Viren) und häufig nicht.

Wie SARS-CoV-2 in das ZNS gelangen kann

Zwei gut lesbare und interessante Arbeiten sind die Revier-Paper von Fotuhi et al. und von Yachou et al., welche aber aus 2020 stammen, was man an manchen Stellen merkt. Die Autoren arbeiten die Wege auf, wie SARS-CoV-2 überhaupt ins ZNS gelangen kann. Eine direkte Infektion des ZNS auf dem Blutweg ist nämlich für die meisten Viren gar nicht so banal möglich, da die Blut-Hirn-Schranke nicht ohne weiteres überwunden werden kann. Ein häufig benutzter Weg ist daher die Infektion der Riechschleimhaut, der Nasen-Rachen-, Darmschleimhaut oder des Plexus choroideus, um in das ZNS zu gelangen. Diese Mechanismen sind für viele Viren beschrieben, auch und insbesondere für andere Atemwegserkrankungserreger wie RSV und Influenza, aber auch für verschiedene Corona-Viren (sowohl tierische, als auch humanpathogene Stämme wie SARS-1, MERS und SARS-CoV-2). Von dort bedienen sich viele Viren des retrograden axonalen Transports, mit dem sie vom Infektionsort Richtung Nervenzelle transportiert werden. Das kennen alle Mediziner von der Tollwut und den Herpesviren, es ist aber ein relativ allgemeiner und häufig benutzter Infektionsmechanismus. Neben dem Riechnervenbündel betrifft das häufig den N. trigeminus und die sensiblen Anteile des N. vagus. Im Nervensystem angekommen (dem Hirnstamm, den hier befinden sich die Hirnnervenkerne), treffen sie auf die verschiedenen Abwehrmechanismen des Körpers. Eine der ersten Strukturen, auf die Viren dann treffen und die aktiviert wird, ist die Mikroglia. Das sind mononukleäre Fresszellen, die Aktivierung von Mikroglia spricht immer für eine Verletzung des ZNS oder einen informatorischen Prozess. Durch die Mikrogliaaktivierung kommt es zur Ausschüttung von Zytokinen und dem Anlocken von weiteren Immunzellen. Ausgeprägte Entzündungsprozesse des ZNS gelten jedoch als Aktivator von neurodegenerativen Prozessen, vermutlich spielt auch hier die Mikroglia eine entscheidende Rolle .

Wo man weiterlesen kann

Fotuhi, M., Mian, A., Meysami, S., & Raji, C. A. (2020). Neurobiology of COVID-19. Journal of Alzheimer’s Disease, 76(1), 3–19. https://doi.org/10.3233/JAD-200581

Yachou, Y., El Idrissi, A., Belapasov, V., & Ait Benali, S. (2020). Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurological Sciences, 41(10), 2657–2669. https://doi.org/10.1007/s10072-020-04575-3

Wie kann man Neurotropie und Neuroinvasion messen?

Kurzer Ausflug in die Grundlagen der Liquordiagnostik

In der Neurologie sind heutzutage zwei Nachweis-Wege einer Infektion des ZNS üblich, wobei der Nachweis in der Regel aus dem Liquor per Liquorpunktion geführt wird: Der direkte Erregernachweis per PCR und der Nachweis spezifischer Antikörper gegen den Erreger, welche im ZNS in höherer Konzentration vorliegen als im Blut. Finden sich Antikörper gegen einen Erreger im Liquor stellt sich die Frage, ob diese wirklich im ZNS produziert wurden, oder aus dem Blut in den Liquor hinübergeschwappt sind. Ob und in welchem Maß das passiert, hängt mit der Dichtigkeit der Blut-Hirn-Schranke zusammen. Diese ist bei jungen und gesunden Menschen sehr dicht, im Alter zunehmend undichter und bei entzündlichen Prozessen oft sehr durchlässig. Je durchlässiger die Blut-Hirn-Schranke aber ist, desto mehr Antikörper aus dem Blut werden sich im Liquor finden. Mit dem Reiber-Schema wird versucht, diesen Sachverhalt zu berücksichtigen. Die Idee ist, ein nur in der Leber synthetisiertes möglichst kleines Protein, nämlich Albumin zu nehmen. Mit dem kann dann das Maß der Dichtigkeit der Blut-Hirn-Schranke bestimmt werden, da alles Albumin, was sich im Liquor findet unweigerlich aus dem Blut, bzw. aus der Leber stammen muss. Viel Albumin im Liquor bedeutet dann eine undichte Blut-Hirn-Schranke, wenig eine sehr dichte. Setzt man nun die verschiedenen Antikörper in das Verhältnis des Albumins im Serum zum Liquor, so kann man ableiten, wie viel Antikörper intrathekal, also im Liquor produziert wurden und wie viel rübergeschwappt sind. Dieses Verhältnis der Antikörper von Liquor zu Serum nennt man Antikörper-Spezifitäts-Index (ASI). Für die meisten Erkrankungen wird ein ASI von > 1,5 (also 1,5 mal so viele Antikörper im Liquor wie im Serum) gefordert, um eine sichere intrathekale Antikörperproduktion anzunehmen zu können.

Ich werde das Thema Reiber-Schema auch noch mal im Blog aufarbeiten, fürs Erste verweise ich aber mal auf die Webseite von Herrn Reiber himself: Link.

Erreger, die man nicht im Liquor per PCR und/oder Antikörper-Wert messen kann, obwohl sie da und auch weiterhin infektiös sind, kommen wirklich selten vor. Manchmal ist das beim JC-Virus so, wenn nur niedrige Viruslasten vorliegen. Dann kann man den Nachweis nur über eine Hirnbiopsie führen.

Nachweis von SARS-CoV-2 im ZNS

Diesen Grundgedanken nach stellt sich die Frage, kann man eine ZNS-Infektion von SARS-CoV-2 per PCR oder erhöhtem Antikörper-Spezifitätsindex nachweisen? In der Anfangsphase der Pandemie fanden sich in vielen Papern Hinweise auf häufige Nachweise von SARS-CoV-2-RNA im Liquor, so zum Beispiel auch in den oben zitierten von Fotuhi et al. und Yachou et al..

In den Arbeiten von Matschke et al. und Ermis et al. gelang der Nachweis von SARS-CoV-2 per PCR oder Antikörper-Spezifitätsindex maximal in 50% der Fälle, bei Helms et al. hingegen gar nicht. Eine Metaanalyse von Li et al. zeigt wiederum ein etwas anderes Bild. Da es eine Metaanalyse ist und auch noch aus diesem Jahr werde ich die Ergebnisse der Arbeit im Folgenden etwas genauer vorstellen:

Die Autoren fassten die Ergebnisse von 97 Studien mit insgesamt 468 COVID-19-Patienten, die eine Liquoruntersuchung erhalten hatten zusammen. In 25 Studien und bei insgesamt 30 Probanden wurde ein positiver PCR-Nachweis gefunden. Das sind nur 6,4% der Gesamtpopulation. Bei knapp 32% wurde ein entzündliches Liquorsyndrom mit erhöhter Leukozytenzahl im Liquor gefunden, bei knapp 43% eine Erhöhung der Gesamt-IgG im Liquor. Ein Antikörper-Spezifitätsindex wurde bei keinem der PCR-positiven Patienten erhoben.

Bei den 438 Probanden mit negativem PCR-Test im Liquor fand sich in 30% ein entzündliches Liquorsyndrom, bei 46,6% eine Erhöhung des Liquor Gesamt-IgG, bei 46% ein Nachweis von SARS-CoV-2-Antikörpern im Liquor, aber nur bei 23% eine intrathekale Immunglobulinsynthese, das heißt bei 23% stammten die COVID-19-Antikörper aus dem Blut.

Die Prätest-Wahrscheinlichkeit für einen positiven Liquorbefund (PCR oder ASI) scheint extrem von der Klinik der Patienten abzuhängen, die höchsten Nachweis-Wahrscheinlichkeiten bestanden bei Enzephalitiden, schweren Enzephalopathien und Guillain-Barré-Syndromen. Bei fehlender oder unspezifischer neurologischer Symptomatik gelang in der Regel kein SARS-CoV-2-Nachweis im Liquor.

Die Studie untersuchte auch 28 Autopsie-Studien mit insgesamt 202 Patienten, die mit oder an COVID-19 verstorben waren. Hier wurde bei 108 Probanden nach SARS-CoV-2-RNA gesucht und bei 52% gefunden und bei 85 Probanden nach viralen Proteinen (in der Regel Spike-Protein) und bei knapp 30% gefunden. Die meisten Nachweise gelangen aus der Riechschleimhaut (58%) (nun ja, ist mal nicht so ganz das ZNS), dem Riechhirn (26%), dem Großhirn (34%) und dem Hirnstamm (32%). Hier war es so, dass ein positiver Nachweis vor allem dann gelang, wenn „strukturelle Auffälligkeiten“ vorhanden waren, also eine Mikrogliaaktivierung oder Lymphozyteninfiltrate.

Zusammenfassend kann man also sagen, dass in ca. 6% aller untersuchten Fälle ein positiver Liquor-PCR-Test gelang und in 23% aller Fälle ein Nachweis einer intrathekalen spezifischen Immunglobulinsynthese gegen SARS-CoV-2. Das ist nicht nichts, aber im Vergleich zu anderen Erkrankungen des Nervensystems eher auffallend wenig. Für viele Erkrankungen (VZV-Infektionen, Neuroborreliose, usw.) wird ein positiver Liquorbefund als diagnostisches Kriterium gefordert.

Wo man weiterlesen kann

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M., Anheim, M., & Meziani, F. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. New England Journal of Medicine, 382(23), 2268–2270. https://doi.org/10.1056/nejmc2008597

Li, Y., Zhang, Y., & Tan, B. (2021). What can cerebrospinal fluid testing and brain autopsies tell us about viral neuroinvasion of SARS‐CoV‐2. Journal of Medical Virology, 93(7), 4247–4257. https://doi.org/10.1002/jmv.26943

Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J. P., Schröder, A. S., Edler, C., Mushumba, H., Fitzek, A., Allweiss, L., Dandri, M., Dottermusch, M., Heinemann, A., Pfefferle, S., Schwabenland, M., Sumner Magruder, D., Bonn, S., Prinz, M., Gerloff, C., Püschel, K., … Glatzel, M. (2020). Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. The Lancet Neurology, 19(11), 919–929. https://doi.org/10.1016/S1474-4422(20)30308-2

Ermis, U., Rust, M. I., Bungenberg, J., Costa, A., Dreher, M., Balfanz, P., Marx, G., Wiesmann, M., Reetz, K., Tauber, S. C., & Schulz, J. B. (2021). Neurological symptoms in COVID-19: a cross-sectional monocentric study of hospitalized patients. Neurological Research and Practice, 3(1), 17. https://doi.org/10.1186/s42466-021-00116-1

SARS-CoV-2 als möglicher Auslöser von Neurodegeneration

Führt eine Infektion mit SARS-CoV-2 zu bleibenden kognitiven Störungen und erhöht sie eine spätere Entwicklung einer neurodegenerativen Erkrankung? Dieses Thema zieht sich seit dem Spätsommer 2020 durch die wissenschaftliche Diskussion, auch und insbesondere bei der Frage, ob man eigentlich mild verlaufende COVID-Infektionen wie bei Kindern und Jugendlichen nicht einfach zulassen sollte oder ob man das unbedingt verhindern muss.

Klar ist, bei einem relativ neuen Virus kann es keine definitiven Aussagen geben. Es ist vielmehr eine Suche nach Indizien, die sich derzeit auftut. Dabei gibt es verschiedene Hauptargumentation-Linien.

Die Indizien

Neuropsychologische Defizite durch eine SARS-CoV-2-Infektion

Ein Ausgangspunkt der Frage von kognitiven Defiziten ist häufig die Arbeit von Hampshire et al., die ich ja auch schon einmal im Long Covid-Artikel vorgestellt hatte. Hier wurde eine IQ-Abnahme um bis zu sieben Punkte durch eine COVID-Infektion postuliert. An der Studie gibt es durchaus ernstzunehmende methodische Kritik (das kann man ebenfalls im verlinkten Blogbeitrag nachlesen), sie ist nach meiner Wahrnehmung in der Folge auch in der wissenschaftlichen Diskussion etwas in der Versenkung verschwunden.

Eigentlich interessanter, wenn auch vom Patientenumfang deutlich kleiner, ist eine Untersuchung aus dem UKE. Hier wurden 18 Probanden, die eine milde bzw. moderate COVID-Infektion durchgemacht hatten im Mittel 85 Tage nach der Infektion neuropsychologisch getestet, zudem sind umfangreiche laborchemische Tests erfolgt. Verglichen wurde die Kohorte mit 10 gesunden Kontrollprobanden. Die COVID-Erkrankten schnitten erheblich schlechter in einem standardisierten Test für leichte kognitive Störungen ab, als die Kontrollgruppe. Es bestand keine Assoziation zu typischen Long Covid-Symptomen, ebenso wenig zu den umfangreichen untersuchten immunologischen Laborparametern, der gemessenen Viruslast bei der Diagnose der COVID-Erkrankung oder zur Schwere des Krankheitsverlaufes und den erhaltenen Medikamenten. Die Autoren ziehen zunächst den Vergleich zu anderen postinfektiösen Erschöpfungssyndromen, z.B. nach EBV-Infektion oder Influenza (siehe auch hier), stellen dann aber fest:

Our data indicate that neurocognitive deficits after recovery from COVID-19 are independent from fatigue and mood alterations and therefore might be different from the classical post-viral syndrome (Perrin et al., 2020) but a specific post-COVID-19 manifestation.

Der erwähnte Artikel von Perrin et al. ist ein letter to the editors, in dem ein Fallbericht eines Long Covid-Syndroms geschildert wird (Link)

Ich bin mir allerdings nach den Recherchen zum Thema Long Covid nicht so sicher, ob man diese Unterscheidung klinisch sauber machen kann. Nahezu alle Studien zu Long Covid haben bei der Symptomabfrage Mehrfachnennungen erlaubt (was ja auch Sinn macht), aber nirgendwo wird ersichtlich, dass es eine Trennung der Angabe von kognitiven Defiziten mit und ohne Assoziation mit chronischer Erschöpfung gegeben hat. Dazu kommt, dass die Autoren ja betonen, dass die Defizite zum großen Teil subklinisch waren und von den Probanden gar nicht unbedingt bemerkt wurden. Bei den Long Covid-Studien (und auch Untersuchungen zu anderen postinfektiösen Erschöpfungssyndromen) geht es aber in der Regel um subjektiv bemerkte Beschwerden.

Wo man weiterlesen kann

Hampshire, A., Trender, W., Chamberlain, S. R., Jolly, A. E., Grant, J. E., Patrick, F., Mazibuko, N., Williams, S. C., Barnby, J. M., Hellyer, P., & Mehta, M. A. (2021). Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine, 000, 101044. https://doi.org/10.1016/j.eclinm.2021.101044

Woo, M. S., Malsy, J., Pöttgen, J., Seddiq Zai, S., Ufer, F., Hadjilaou, A., Schmiedel, S., Addo, M. M., Gerloff, C., Heesen, C., Schulze Zur Wiesch, J., & Friese, M. A. (2020). Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications, 2(2), 1–9. https://doi.org/10.1093/braincomms/fcaa205

Die PET-Studien

Im Beitrag zur Pathogenese von Long Covid (Link) hatte ich eine der mittlerweile mehreren PET-Studien zum Thema Neuro-COVID schon einmal vorgestellt: Die Arbeit von Hosp et al. und die Anschluss-Studie von Blazhenets et al..

Kurz zusammengefasst wurden 29 schwer betroffene COVID-Patienten im Schnitt einen Monat nach Infektion per FDG-PET untersucht, ebenso eine alterskorrelierte Kontrollgruppe. Herausgefunden wurde ein für neurodegenerative Erkrankungen untypisch verteilter Glukose-Hypometabolismus mit frontaler und parietaler Betonung, einhergehend mit kognitiven – nicht delirtypischen – Defiziten. In einer Folgeuntersuchung nach sechs Monaten waren kognitive Beschwerden und Hypometabolismus teilregredient. Eine kleinere Studie (Morand et al.) mit sieben Kindern, die ein ähnlichen Hypometabolismus zeigten, sorgte für wilde Diskussionen in den sozialen Netzwerken. Größte Schwäche der Kinder-Studie ist die fehlende Kontrollgruppe und die nur bei drei der sieben Kinder bestätigte COVID-Infektion.

Was die Autoren der PET-Studien betonen, ist in der Regel ein COVID-spezifisches Hypometabolismus-Muster und die fehlenden neuropsychologischen Befunde, die auf ein bestehendes Delir hindeuten würden. Dies steht allerdings im diametralen Widerspruch zu einer großen Metaanalyse über COVID-induzierte neuropsychologische und psychiatrische Folgen (Rogers et al.), in der ein Delir bei 27,9% aller COVID-Patienten eines der häufigsten Symptome war.

Wo man weiterlesen kann

Blazhenets, G., Schröter, N., Bormann, T., Thurow, J., Wagner, D., Frings, L., Weiller, C., Meyer, P. T., Dressing, A., & Hosp, J. A. (2021). Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. Journal of Nuclear Medicine, jnumed.121.262128. https://doi.org/10.2967/jnumed.121.262128

Hosp, J. A., Dressing, A., Blazhenets, G., Bormann, T., Rau, A., Schwabenland, M., Thurow, J., Wagner, D., Waller, C., Niesen, W. D., Frings, L., Urbach, H., Prinz, M., Weiller, C., Schroeter, N., & Meyer, P. T. (2021). Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain, 1–14. https://doi.org/10.1093/brain/awab009

Morand, A., Campion, J. Y., Lepine, A., Bosdure, E., Luciani, L., Cammilleri, S., Chabrol, B., & Guedj, E. (2021). Similar patterns of 18F-FDG brain PET hypometabolism in paediatric and adult patients with long COVID: a paediatric case series. European Journal of Nuclear Medicine and Molecular Imaging, 0123456789. https://doi.org/10.1007/s00259-021-05528-4

Rogers, J. P., Chesney, E., Oliver, D., Pollak, T. A., McGuire, P., Fusar-Poli, P., Zandi, M. S., Lewis, G., & David, A. S. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry, 7(7), 611–627. https://doi.org/10.1016/S2215-0366(20)30203-0

Die MRT-basierte Studie

Eine der faszinierendsten Arbeiten zu dem Thema ist meines Erachtens ein Paper, was bislang nur als Preprint existiert. Das Konzept der Autoren war, sich der UK Biobank (Link englische Wikipedia) und der darin hinterlegten MRT-Aufnahmen zu bedienen, die vor der COVID-Pandemie angefertigt wurden. 401 Biobank-Teilnehmer mit einer zwischenzeitlich erlittenen COVID-19-Infektion und eine Kontrollgruppe von 384 Probanden wurden nach ein zweites Mal per cMRT untersucht, im Schnitt 3 Jahre nach der Erstuntersuchung. Untersuchungs- und Kontrollgruppe wurden für folgende Confunder angeglichen: Die Vorerkrankungen Blutdruck und Diabetes mellitus, den Body-Mass-Index, den sozioökonomischen Status und für den Sucht- und Genussmittelkonsum Rauchen und regelmäßiger Alkoholkonsum. Die Studienteilnehmer mussten einen neuropsychologischen Test (trail making test) absolvieren.

Die MRT-Aufnahmen vor und nach der COVID-Infektion wurden automatisiert ausgewertet und statistisch aufbereitet. Mit diesen Verfahren (also keiner klassischen Befundung, bei der sich ein Radiologe beide Aufnahmen anschaut und vergleicht) konnten eine Abnahme der Dicke der grauen Substanz im linken orbitofrontalen und beidseitigen parahippocampalen Kortex, sowie im Bereich des Riechhirns bei den SARS-CoV-2 positiven Probanden gezeigt werden. Es schnitten die SARS-CoV-2 positiven Studienteilnehmer deutlich schlechter als die Kontrollgruppe in der neuropsychologischen Testung ab. Je kränker und älter die Probanden waren, desto deutlicher war der Effekt. Eine Erholung im engeren Sinne ließ sich nicht beobachten, eine länger zurückliegende Infektion hatte keinen Einfluss auf die Untersuchungsergebnisse.

Die Autoren durchdenken zwei mögliche Erklärungsmodelle für ihre Beobachtungen: Eine neuronale Degeneration, ausgehend vom Riechhirn (bei dem eine SARS-CoV-2-Infektion auf Grund der häufigen Hyposmie gemeinhin angenommen wird). Durch die verschiedenen Faserverbindungen, die vom Riechhirn ausgehen, müsste nicht mal eine weitergehende ZNS-Infektion stattfinden. Ein ähnliches Degenerationsmuster wurde für Influenza-Viren in der Vergangenheit schon gezeigt. Die zweite Hypothese ist eine ausgeprägte (auto)inflammatorische Reaktion (der berühmte Zytokinsturm).

Wo man weiterlesen kann

Douaud, G., Lee, S., Alfaro-Almagro, F., Arthofer, C., Wang, C., Lange, F., Andersson, J. L. R., Griffanti, L., Duff, E., Jbabdi, S., Taschler, B., Winkler, A., Nichols, T. E., Collins, R., Matthews, P. M., Allen, N., Miller, K. L., & Smith, S. M. (2021). Brain imaging before and after COVID-19 in UK Biobank. MedRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.06.11.21258690

Spike-Protein und ß-Amyloid: Theoretische Betrachtungen

Wie es manchmal so ist, wurde immer wieder eine sehr theoretische und aus der Grundlagenforschung stammende Arbeit zu dem Thema zitiert, die man aber einmal einordnen muss, da sie sonst vor allem Fragen hinterlässt. In der Kurzversion des Blogbeitrages (Link) hatte ich schon mal etwas dazu geschrieben.

Die Arbeit von Idrees und Kumar hat mit einer Computersimulation mit dem HDOCK server (einer webbasierten Lösung, mit der Proteininteraktionen simuliert werden können, Link pubmed) mögliche Interaktionen und Bindungen zwischen dem Spike-Protein von SARS-CoV-2 und den vier Proteinen, welche wir von den neurodegenerativen Erkrankungen kennen (ß-Amyloid, tau-Protein, a-Synuclein und TDP-43, hier kann man zu dem Thema neuropathogene Proteine etwas weiterlesen) ermittelt. Es handelt sich also um ein theoretisches Computer-Experiment. Heraus kam, dass das Spike-Protein durchaus mit den neurodegenerativen Proteinen interagieren und auch an diese mit einer erhöhten Affinität binden kann. Die Autoren verweisen auf eine andere Arbeit, die die Induktion von neurodegenerativen Erkrankungen durch verschiedene Virusinfektionen nahegelegt habe (Zhou et al., zu der ich weiter unten noch was schreibe) und schlussfolgern, dass es sich mit SARS-CoV-2 ähnlich verhalten könnte.

Wo man weiterlesen kann

Idrees, D., & Kumar, V. (2021). SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochemical and Biophysical Research Communications, 554, 94–98. https://doi.org/10.1016/j.bbrc.2021.03.100

ACE und Neuro-COVID

Im Long Covid-Blogthema ging es schon einmal um das die Bindung des Spike-Proteins an ACE-Rezeptoren (hier kann man dazu weiterlesen, Link), aber wenn man das Thema Neurodegeneration und Covid verstehen möchte, muss man sich wohl oder übel etwas näher damit beschäftigen. Sehr empfehlenswert sind dazu die Review-Paper von Miners et al. und von Pacheco-Herrero et al.. Beide Autorengruppen geben einen umfassenden Überblick über die angenommenen Mechanismen zur möglichen Neurodegeneration verstärkenden von SARS-CoV-2. Das Thema ist sehr theoretisch und grundlagenforschungslastig, aber ich versuch mal mein bestes:

Der Schlüssel für die Invasion von Körperzellen durch SARS-CoV-2 ist die Bindung des Virus an das Angiotensin-konvertierende Enzym-2 (ACE-2). ACE-2 wird auf vielen Neuronen exprimiert, auch und insbesondere im Riechhirn, im Hippocampus und generell im Temporallappen, zudem auf vielen Gliazellen. Aus Tierexperimenten weiß man zudem, dass das SARS-1-Virus den Nervus vagus infiltrieren und hier retrograd in den Hirnstamm gelangen kann. Dieser retrograde axonale Transport ist ja ein Phänomen, welches sehr viele Viren beherrschen (nicht nur Tollwut-Viren und Viren der Herpesgruppe) und mit dem sich viele Viren durch den Körper „bewegen“. Es ist naheliegend, dass wenn SARS-1-Virus das kann, SARS-CoV-2 derartige Features auch beherrscht, v.a. weil in Autopsie-Studien vereinzelt SARS-CoV-2 im Hirnstamm und häufig (z.B. Matschke et al.) dort eine lymphozytäre Infiltration und Mikrogliaaktivierung nachgewiesen wurde, die ja in der Regel eine Reaktion auf irgendetwas andere ist, z.B. eine massive Immunreaktion.

Einen guten Hinweis in diese Richtung gibt die Arbeit von Heneka et al.. Die Autoren beschreiben die vielen verschiedenen Zytokine, die v.a. bei schweren COVID-19-Verläufen nachgewiesen wurden, namentlich: Interleukin-1β, Interleukin-2, Interleukin-2-Rezeptor, Interleukin-4, Interleukin-10, Interleukin-18, Interferon-γ, C-reaktives Protein, Granulozytenkolonie-stimulierender Faktor, Interferon-γ, CXCL10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α und Tumornekrosefaktor-α bei parallel aber abfallenden T-Zell-Spiegeln im Blut, welche man aus der häufigen Leukopenie ableiten könne und die Aktivierung von Inflammasomen, (Link Wikipedia), also von Proteinkomplexen, die Entzündungsreaktionen auslösen können. Besonders der Protein-Komplex mit dem klangvollen Namen NLRP3 wurde auch bei anderen schweren Erkrankungen (v.a. bei Sepsis-Patienten, aber auch bei Influenza-Infektionen) als ein wesentlicher Bestandteil in der Pathogenese identifiziert und ist in Laborexperimenten mir einer Induktion von Peptid-Ablagerungen wie Amyloid-ß assoziiert gewesen. Die Autoren leiten daraus eine mögliche Induktion von Demenzerkankungen durch SARS-CoV-2 ab, beziehen sich aber klinisch v.a. auf die Assoziation von NLRP3 bei der Sepsis mit Neurodegeneration.

Mit der Infektion mit SARS-CoV-2 scheint es zu einer Spaltung von ACE-Rezeptoren und einer Internalisierung dieser zu kommen, wodurch dem Körper weniger ACE-Rezeptoren zur Verfügung stehen. Dies führt zu Ungleichgewichten im Renin-Angiotensin-System (Link Wikipedia), welches durch ACE je wesentlich gesteuert wird. Der Theorie nach führt das zu Endothelschäden und einer Dysfunktion der kleinen Gefäße, wenn man so will zu einer Mikroangiopathie. Das ist der Punkt der gemeint ist, wenn gesagt wird: COVID-19 ist eine Erkrankung des Endothels.

Aus der Grundlagenforschung zur Alzheimer-Demenz weiß man wiederum, dass auch hier in der Frühphase der Erkrankung die kleinen Gefäße eine wichtige Rolle zu spielen scheinen und eine Dysfunktion hier zu einer erhöhten Konzentration von neurotoxischen Amyloid-ß-Ansammlungen führt. Dies wiederum bedingt eine Fehlfunktion der Perizyten, also der den Kapillaren anliegenden Bindegewebezellen. Hierdurch wird die Blut-Hirn-Schranke durchlässiger. Das alles führt zu oxidativem Stress mit vermehrter NO-Ausschüttung, was wiederum Mitochondrien-Schäden verursachen kann und zudem eine Hyperphosphorilierung von Tau-Protein induziert. Das hier eine Verbindung zwischen Alzheimer-Pathomechanismen und COVID-19 besteht, wird mit Erkenntnissen aus Tiermodellen unterfüttert, bei denen transgene Mäuse nach Atemwegsinfektionen vermehrte T-Zell-Infiltrationen im Gehirn und eine vermehrte Amyloid-ß-Ablagerung bekamen. Mit zunehmendem Alter und männlichem Geschlecht gibt es weniger ACE-Exprimierung, was der Theorie nach die schwereren Krankheitsverläufe bei COVID-19 und das schlechtere Outcome erklären könnte, so die Autoren. Zudem merken sie an, dass die weiteren Risikofaktoren für ein schlechtes COVID-Outcome Bluthochdruck, Diabetes und Adipositas ebenfalls mit einer Fehlregulation des Renin-Angiotensin-Systems einhergehen. Für die Nicht-Neurologen, vor allem die Intensivmediziner sei erwähnt, dass eine Renin-Angiotensin-System-Dysfuntion auch mit einem höheren Risiko eines ARDS (Link Wikipedia) einhergeht.

Wo man weiterlesen kann

Heneka, M. T., Golenbock, D., Latz, E., Morgan, D., & Brown, R. (2020). Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer’s Research & Therapy, 12(1), 69. https://doi.org/10.1186/s13195-020-00640-3

Matschke, J., Lütgehetmann, M., Hagel, C., Sperhake, J. P., Schröder, A. S., Edler, C., Mushumba, H., Fitzek, A., Allweiss, L., Dandri, M., Dottermusch, M., Heinemann, A., Pfefferle, S., Schwabenland, M., Sumner Magruder, D., Bonn, S., Prinz, M., Gerloff, C., Püschel, K., … Glatzel, M. (2020). Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. The Lancet Neurology, 19(11), 919–929. https://doi.org/10.1016/S1474-4422(20)30308-2

Miners, S., Kehoe, P. G., & Love, S. (2020). Cognitive impact of COVID-19: looking beyond the short term. Alzheimer’s Research & Therapy, 12(1), 170. https://doi.org/10.1186/s13195-020-00744-w

Pacheco-Herrero, M., Soto-Rojas, L. O., Harrington, C. R., Flores-Martinez, Y. M., Villegas-Rojas, M. M., León-Aguilar, A. M., Martínez-Gómez, P. A., Campa-Córdoba, B. B., Apátiga-Pérez, R., Corniel-Taveras, C. N., Dominguez-García, J. de J., Blanco-Alvarez, V. M., & Luna-Muñoz, J. (2021). Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Frontiers in Neurology, 12(March 2020), 1–19. https://doi.org/10.3389/fneur.2021.660087

Was bedeutet das nun?

Allgemeines Prinzip oder SARS-CoV-2-Besonderheit?

Der Aspekt, der mich am meisten an dem Thema interessiert ist, ob es sich bei den Erkenntnissen um SARS-CoV-2-spezifische Prozesse handelt oder am Ende um allgemeingültige Pathomechanismen, die wir bei anderen Infektionskrankheiten auch sehen können (vielleicht in der Vergangenheit aber nicht genau genug hingeschaut haben). Dieser Gedanke ist in so fern naheliegend, da zu keinem Zeitpunkt in der Geschichte der medizinischen Forschung mit vergleichbarem personellen und finanziellen Aufwand Forschung zu einem einzigen Krankheitsbild betrieben wurde.

Was beim Lesen der Studien und Review-Paper auffällt, dass nahezu überall andere virale Infektionskrankheiten als Referenz und Vergleich genannt werden, interessanterweise meistens Influenza, RS-Virus und die Viren der Herpesgruppe. Das betrifft die Mechanismen der Neuroinvasion über das Riechhirn, Atrophien von Nervenzellschichten nach Infektion und postinfektiös auftretenden kognitiven Störungen. Dass nach anderen Infektionen Gedächtnisstörungen auftreten, ist kein großes Geheimnis, insbesondere nicht, wenn ein komorbides Delir vorliegt. Nicht ohne Grund werden standardisierte neuropsychologische Testungen mit der Frage nach einer Demenzerkrankung in der Regel frühestens sechs Monate nach einem Delir durchgeführt.

Der Infektionsmechanismus über die ACE-2-Infiltration scheint hingegen ziemlich Corona-Virus-spezifisch zu sein, allerdings nur für SARS-CoV-2 und für das SARS-1-Virus und nicht für MERS und verschiedene Tier-Coronaviren (vgl. Ng Kee Kwong et al.)

Was man zum Zusammenhang von Virusinfektionen und Neurodegeneration weiß

In mehreren Papern wird auf die Arbeit von Zhou et al. zum Thema Neurodegeneration und Viruserkrankungen verwiesen. Auch hierzu eine kurze Zusammenfassung: Es handelt sich um eine relativ lange Review-Arbeit, in der für verschiedene (neurotrope) Viren die Möglichkeit einer Assoziation mit neurodegenerativen Erkrankungen erläutert werden. Dabei muss man beachten, dass die Arbeit von 2013 ist und einige hier präferierte Mechanismen in den letzten acht Jahren kaum noch diskutiert wurden. Die Autoren betonen eine Assoziation zwischen Herpes-Enzephalitiden und hierdurch wahrscheinlicher auftretenden Demenzerkankungen, ziehen eine (sattsam bekannte) Verbindung zwischen Infektionen mit Viren aus der Herpes-Gruppe und der Entwicklung einer Multiplen Sklerose und zwischen Influenza-Infektionen und der Entwicklung von Parkinson. Es wird auch der historische Vergleich bemüht, dass nach verschiedenen Grippe-Pandemien verstärkt postinfektiöse Parkinson-Erkrankungen beobachtet wurden.

Einschränkend muss erwähnt werden, dass man hier zwar statistische Korrelationen zeigen kann, dass bis heute aber die Virus-Hypothese bei der Multiplen Sklerose nicht bewiesen werden konnte (anders als der Einfluss des Vitamin-D-Spiegels), ebenso wenig Influenza-Infektionen als Auslöser von Parkinson. Als statistisch evidente Risikofaktoren für die Entwicklung von Parkinson-Erkrankungen gelten weiterhin fehlender Koffein- Alkohol- und Nikotinkonsum, Kopftraumata, Obstipationsneigung, depressive Störungen, Angsterkrankungen, Beta-Blocker-Einnahme, kein Bluthochdruck, Arbeiten in der Landwirtschaft, Leben auf dem Land und Pestizid-Exposition (vgl. Pan-Montojo und Reichmann und Lill und Klein).

Man muss sogar sagen, dass in den letzten Jahren das Verständnis der Entstehung neurodegenerativer Erkrankungen riesige Fortschritte gemacht hat (insbesondere was die Prion-artige Ausbreitung der pathogenen fehlgefalteten Proteine betrifft), hinsichtlich des Themas einer ggfs. Virus-bedingten Triggerung hingegen so gut wie nichts getan hat.

Wo man weiterlesen kann

Ng Kee Kwong, K. C., Mehta, P. R., Shukla, G., & Mehta, A. R. (2020). COVID-19, SARS and MERS: A neurological perspective. Journal of Clinical Neuroscience, 77(January), 13–16. https://doi.org/10.1016/j.jocn.2020.04.124

Pan-Montojo, F., & Reichmann, H. (2015). Ursache der Parkinson-Krankheit: Braak revisited. Aktuelle Neurologie, 41(10), 573–578. https://doi.org/10.1055/s-0034-1387475

Lill, C. M., & Klein, C. (2017). Epidemiologie und Ursachen der Parkinson-Erkrankung. Der Nervenarzt, 88(4), 345–355. https://doi.org/10.1007/s00115-017-0288-0

Zhou, L., Miranda-Saksena, M., & Saksena, N. K. (2013). Viruses and neurodegeneration. Virology Journal, 10(1), 1. https://doi.org/10.1186/1743-422X-10-172

Ein Fazit?

Das ziehe ich in Teil 3. Ich möchte das mit Absicht von der Schilderung der wissenschaftlichen Literatur abgrenzen, da ich denke, dass man die Frage, ob SARS-CoV-2 nun neurodegenerative Prozesse wahrscheinlicher machen kann durchaus unterschiedlich interpretieren kann.

SARS-CoV-2 und Neurodegeneration

Heute soll es relativ kurz und außer der Reihe um das Thema Führt eine COVID-19-Erkrankung zu einer höheren Wahrscheinlichkeit einer späteren neurodegenerativen Erkrankung? gehen. Anlass war diese Replik hier:

Das darin verlinkte Paper von Idrees und Kumar kannte ich bislang noch nicht, wohl aber ein ähnlich thematisch positioniertes von Pacheco-Herrero et al. (okay, zugegebenermaßen weil es im DGN-Covid-Paper-Journal-Club besprochen wurde (Link).

Kurze Zusammenfassung

SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration

Diese Arbeit ist eine Arbeit aus der Grundlagenforschung. Es wurden mit einer Computersimulation mit dem HDOCK server (einer webbasierten Lösung, mit der Proteininteraktionen simuliert werden können) mögliche Interaktionen und Bindungen zwischen dem Spike-Protein von SARS-CoV-2 und den vier Proteinen, welche wir von den neurodegenerativen Erkrankungen kennen (ß-Amyloid, tau-Protein, a-Synuclein und TDP-43, hier kann man dazu etwas weiterlesen) ermittelt. Es handelt sich also um ein theoretisches Computer-Experiment. Heraus kam, dass das Spike-Protein durchaus mit den neurodegenerativen Proteinen interagieren und auch an diese mit einer gewissen Affinität binden kann. Die Autoren verweisen auf eine andere Arbeit, die die Induktion von neurodegenerativen Erkrankungen durch verschiedene Virusinfektionen gezeigt habe (Zhou et al.) und schlussfolgern, dass es sich mit SARS-CoV-2 ähnlich verhalten könnte.

Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection

In dieser Arbeit – welche auch im Mai 2021 erschien – ging es primär um verschiedene Infektionswege von SARS-CoV-2 und eine etwaige Neurotropie. Es ist ein sehr aufwändig gestaltetes Review-Paper, ebenfalls aus der Grundlagenforschung. Die Autoren fassen verschiedene molekularbiologische Aspekte einer SARS-CoV-2-Infektion über ACE-Rezeptoren zusammen (hier kann man dazu weiterlesen Link). Durch die ACE-Aktivierung wird NO ausgeschüttet, welches v.a. Mitochondrien-Schäden verursachen kann, zudem eine Hyperphosphorilierung von Tau-Protein induziert. Auch die Autoren verweisen auf andere Arbeiten, welche eine Assoziation zwischen Virusinfektionen und neurodegenerativen Erkrankungen zeigten.

Wie will man diese Erkenntnisse deuten?

Das ist die große Frage. Verwiesen wird in beiden Arbeiten auf andere Studien, zum Beispiel die von Zhou et al. zum Thema Neurodegeneration und Viruserkrankungen.

Noch ein Paper: Viruses and neurodegeneration

Auch hierzu eine kurze Zusammenfassung. Es handelt sich um eine relativ lange Review-Arbeit, in der für verschiedene (neurotrope) Viren die Möglichkeit einer Assoziation mit neurodegenerativen Erkrankungen erläutert werden. Dabei muss man beachten, dass die Arbeit von 2013 ist und einige hier präferierte Mechanismen in den letzten acht Jahren kaum noch diskutiert wurden. Die Autoren betonen eine Assoziation zwischen Herpes-Enzephalitiden und hierdurch wahrscheinlicher auftretenden Demenzerkrankungen, ziehen eine (sattsam bekannte) Verbindung zwischen Infektionen mit Viren aus der Herpes-Gruppe und der Entwicklung einer Multiplen Sklerose und zwischen Influenza-Infektionen und der Entwicklung von Parkinson. Es wird auch der historische Vergleich bemüht, dass nach verschiedenen Grippe-Pandemien verstärkt postinfektiöse Parkinson-Erkrankungen beobachtet wurden.

Einschränkend muss erwähnt werden, dass man hier zwar statistische Korrelationen zeigen kann, dass bis heute aber die Virus-Hypothese bei der Multiplen Sklerose nicht bewiesen werden konnte (anders als der Einfluss des Vitamin-D-Spiegels), ebenso wenig Influenza-Infektionen als Auslöser von Parkinson. Als statistisch evidente Risikofaktoren für die Entwicklung von Parkinson-Erkrankungen gelten weiterhin fehlender Koffein- Alkohol- und Nikotinkonsum, Kopftraumata, Obstipationsneigung, depressive Störungen, Angsterkrankungen, Beta-Blocker-Einnahme, kein Bluthochdruck, Arbeiten in der Landwirtschaft, Leben auf dem Land und Pestizid-Exposition (vgl. Pan-Montojo und Reichmann und Lill und Klein).

Beunruhigen mich die Paper?

Eher nicht. Und zwar in erster Linie deshalb, weil diese Frage nach der Rolle von Viren in der Genese sowohl von autoimmun-entzündlichen Erkrankungen als auch bei der Entstehung von neurodegenerativen Syndromen seit Jahren (im Endeffekt seit ich Neurologie mache) in ihrer Beantwortung stagniert und man sagen kann: Ja, es ist möglich, aber nicht unbedingt wahrscheinlich.

Wo man weiterlesen kann

Zhou, L., Miranda-Saksena, M., & Saksena, N. K. (2013). Viruses and neurodegeneration. Virology Journal, 10(1), 1. https://doi.org/10.1186/1743-422X-10-172

Pan-Montojo, F., & Reichmann, H. (2015). Ursache der Parkinson-Krankheit: Braak revisited. Aktuelle Neurologie, 41(10), 573–578. https://doi.org/10.1055/s-0034-1387475

Lill, C. M., & Klein, C. (2017). Epidemiologie und Ursachen der Parkinson-Erkrankung. Der Nervenarzt, 88(4), 345–355. https://doi.org/10.1007/s00115-017-0288-0

Idrees, D., & Kumar, V. (2021). SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochemical and Biophysical Research Communications, 554, 94–98. https://doi.org/10.1016/j.bbrc.2021.03.100

Pacheco-Herrero, M., Soto-Rojas, L. O., Harrington, C. R., Flores-Martinez, Y. M., Villegas-Rojas, M. M., León-Aguilar, A. M., Martínez-Gómez, P. A., Campa-Córdoba, B. B., Apátiga-Pérez, R., Corniel-Taveras, C. N., Dominguez-García, J. de J., Blanco-Alvarez, V. M., & Luna-Muñoz, J. (2021). Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Frontiers in Neurology, 12(March 2020), 1–19. https://doi.org/10.3389/fneur.2021.660087

Was man auch im Jahr 2021 noch über Polio wissen sollte

Polio hatte ich eigentlich gar nicht mehr auf der Kappe, aber im Rahmen des Corona-Themas kocht es gerade an verschiedenen Stellen hoch, meist um die Notwendigkeit und Dringlichkeit einer Impfung zu untermalen:

Doch der Vergleich hinkt und hier kommt jetzt, warum das so ist. Außerdem trifft man – zunehmend seltener – auf Patienten mit einem Post-Polio-Syndrom, von dem die meisten von uns auch nur noch wenig Ahnung haben. Also, Bühne frei für Polio.

Die große Familie der Enteroviren

Polioviren gehören zu den Enteroviren. Das ist eine große Gruppe von umhüllten RNA-Viren, die sich – wie der Name sagt – vor allem im Magen-Darm-Trakt vermehren. Durch ihre Hülle sind Enteroviren relativ resistent gegen Umwelteinflüsse und auch gegen Desinfektionsmittel. Es gibt weit über 100 Viren-Spezies der Enteroviren, von denen viele Infektionen beim Menschen verursachen. In vielen Fällen erscheinen diese wahllos irgendwelche Schleimhäute zu betreffen, so dass Atemwegsinfekt, Gastroenteritiden, Bindehautentzündungen, Myositiden, Myokarditiden und Perikarditiden beschrieben sind. Zudem sind die meisten Enteroviren relativ neurotrop invasiv. Fast alle in der Neurologie Beschäftigten haben schon Patienten mit einer viralen, durch Enteroviren bedingten, Meningitis gesehen. Eltern von Kita-Kindern kennen zudem Coxsackie-Viren, die auch zu den Enteroviren gehören, und die die allseits beliebte Hand-Mund-Fuß-Krankheit verursachen (ein großer Spaß). Und auch Polioviren gehören zu den Enteroviren. Allen Enteroviren ist gemein, dass sie in erste Linie Kinder bis zum 10. Lebensjahr infizieren (und Erwachsene deutlich seltener).

In den letzten 10 Jahren sind insbesondere aus dem asiatischen Raum zudem Fallberichte von Patienten mit einem „neuen“ Enterovirus-Serotyp aufgetaucht, dem Enterovirus EV-71. So furchtbar neu ist EV-71 aber nicht, man kennt es seit den 1960er Jahren. EV-71 scheint sehr variabel in den Beschwerden zu sein, welche es verursacht. Sowohl Hand-Mund-Fuß-Syndrome, als auch Meningitiden, als auch Polio-ähnliche-Symptome und Hirnstammenzephalitiden wurden beschrieben, teils auch mit tödlichem Verlauf.

Das Polio-Virus

Vom Polio-Virus sind drei Serotypen bekannt, die einfach durchnummeriert worden sind, von Poliovirus Typ 1, über Poliovirus Typ 2 zu Poliovirus Typ 3. Die Serotypen 2 und 3 spielen seit Jahren klinisch keine Rolle mehr. Es gibt bei Polio keine Kreuzimmunität zwischen den verschiedenen Serotypen oder anderen Enteroviren. Polio wird in der Regel fokal-oral oder oral-oral übertragen und zu einem geringen Teil auch über Tröpfcheninfektionen.

Virus-Vermehrung

Nach Infektion mit dem Polio-Virus kommt es im Magen-Darm-Trakt, aber auch im Rachenraum zu einer Vermehrung des Virus. Von dort kann das Virus in den Blutkreislauf gelangen. Bei einem kleinen Teil der Infizierten (5-10%) gelingt dem Virus ein Befall des ZNS – das ist die Poliomyelitis – die anderen bilden Antikörper aus ohne je ernsthaft krank geworden zu sein. Die Inkubationszeit bis zu einer Erkrankung dauert zwischen sechs und 20 Tagen.

Die Poliomyelitis

Das Poliovirus befällt vorwiegend – aber nicht nur – motorische Vorderhornzellen im Rückenmark. Zweithäufigster Manifestationsort sind die Hirnnervenkerne. Die neurodestruktive Wirkung von Polio beruht einmal auf der Neuroinvasion durch das Virus selber, zum Anderen auf der Immunreaktion auf die stattgehabte Infektion. Man unterscheidet drei Verlaufsformen der Poliomyelitis:

Die abortive Poliomyelitis

Schätzungsweise 4-8% der Infizierten bekommen eine subklinisch verlaufende Poliomyelitis. Die Symptomatik beschränkt sich auf Allgemeinsymptome wie Abgeschlagenheit, Halsschmerzen, Durchfall, Fieber und Krankheitsgefühl.

Die nicht-paralytische Poliomyelitis

1-2% der Infizierten bekommen ein meningitisches Krankheitsbild mit Kopfschmerzen, Übelkeit, Nackensteifigkeit und Fieber. Die nicht-paralytische Poliomyelitis kann in einem zweigipfeligen Krankheitsverlauf in eine paralytische Poliomyelitis übergehen.

Die paralytische Poliomyelitis

Die paralytische Poliomyelitis ist das Krankheitsbild, was man gemeinhin mit Polio verbindet. Es betrifft 0,1-1% aller Infizierten, beginnt häufig mit schweren Schmerzsyndromen, sowohl radikuläre Schmerzen als auch unspezifische Rücken- und Kopfschmerzen, anschließend bilden sich rasch asymmetrische schlaffe Paresen aus. Besonders häufig sind die Beine betroffen, aber auch Arme, Atemmuskulatur können betroffen sein und sehr selten – dann aber mit einer hohen Letalität – kommt es zu einem bulbären Verlauf der Erkrankung.

Die Paresen bleiben oft mehrere Monate bestehen, bevor sie sich langsam zurückbilden, oft kommt es aber zu Defektsyndromen.

Diagnostik und Therapie von Polio

Polio-Viren können aus allen Körperflüssigkeiten, v.a. aber im Stuhl isoliert werden, wobei die Virusisolation eine eher in die Jahre gekommene Technik ist. Heute wird man den Nachweis eher per PCR führen. Wichtig für die Neurologen unter uns ist, dass die PCR alleine aus dem Liquor eine niedrige Sensitivität hat.

Eine spezifische Therapie gegen Polio gibt es nicht. Es bleibt die rein symptomatische Therapie und das Containment ganz Corona-Like mit Isolation der Betroffenen und Quarantäne für Kontaktpersonen.

Impfung

Die Impfung gegen Polio wird von der STIKO als Dreifach-Schutzimpfung empfohlen. Sie ist in dem 6-fach-Impfstoff enthalten, den Babys und Kleinkinder mit zwei, vier und elf Monaten bekommen (der 6-fach-Impfstoff beinhaltet darüber hinaus noch Tetanus, Diphertie, Keuchhusten, Haemophilus influenzae Typ B und Hepatitis B). Eine weitere Auffrischimpfung (oder neudeutsch Booster-Impfung) gibt es dann im Teenager-Alter und dann noch mal als Reiseimpfung bei Reisen in Risikogebiete, wenn die letzte Impfung länger als 10 Jahre zurück liegt.

Auch für Polio benötigt man für eine Herdenimmunität sehr hohe Impfquoten um 95%, die in Deutschland seit einigen Jahren nicht mehr erreicht werden. Schlusslicht der Impfquote ist dabei der Südwesten Deutschlands, wo nur um die 90% der Kinder gegen Polio geimpft sind.

Post-Polio-Syndrom

Das Post-Polio-Syndrom ist bis heute nur schlecht verstanden. 20-50% derjenigen, die eine paralytische Myelitis erlitten hatten, bekommen 15-40 Jahre nach der Polio-Infektion erneut schlaffe Paresen, oft an den ehemals betroffenen Extremitäten und oft erneut mit Schmerzen und einer Fatigue einhergehend.

Pathogenese des Post-Polio-Syndroms

Es gibt verschiedene Ideen zur Pathogenese, eine Viruspersitenz in den Vorderhornzellen, autoimmune Phänomene, eine im Verlauf der Jahre dekompensierende Begleit-Myopathie und die sogenannte distale Degeneration. Diese Theorie besagt, dass es im Verlauf der Jahre zu einem Untergang der im Rahmen der Infektion zunächst beschädigten und dann regenerierten motorischen Einheiten kommt. Das muss man für alle Nicht-Neurologen und für die, die das EMG nur von weitem gesehen haben noch einmal in Ruhe erklären:

Bei einer neuerogenen Schädigung – wie sie bei Polio passiert, aber auch bei einer Polyneuropathie – gehen ja Nervenfasern kaputt. Dadurch werden einzelne Muskelfasern nicht mehr angesteuert. Den denervierten Muskelfasern fehlt die Kontrolle vom Rückenmark. Es kommt zu spontanen Muskelkontraktionen, der Spontanaktivität. Sprossen dann die Nervenfasern im Rahmen von Reparaturvorgängen im Verlauf wieder aus, gelingt es dem Körper nicht, wieder eine 1:1-Nerv-Muskel-Versorgung herzustellen. Vielmehr versorgen nun einzelne Nervenfasern ganze Gruppen motorischer Einheiten. Hierdurch kommt es zu sogenannten Risenpotentialen im EMG, eben weil mehrere motorische Einheiten simultan angesteuert und innerviert werden. Statt einer gleichmäßigen und abwechselnden Innervation verschiedener motorischer Einheiten, werden die verbliebenen sehr großen Einheiten sehr schnell und hochfrequent angesteuert.

Diese großen motorischen Einheiten können – so die Theorie – nicht über Jahre aufrechterhalten werden, v.a. wenn eine gewisse Autoimmunität vorliegen sollte. In Autopsiestudien zum Post-Polio-Syndrom konnte wohl zudem ein (erneuter) entzündlicher Rückenmarksprozess in den Vorderhörnern gezeigt werden.

Therapie des Post-Polio-Syndroms

Die Therapie des Post-Polio-Syndroms ist in erster Linie nicht-medikamentös mit Physiotherapie und ggfs. Orthesen-Versorgung. IVIG sollen gegen die begleitenden Schmerzen helfen, ebenso Lamotrigin, welchem neben einem schmerzlindernden auch ein fatiguebessernder Effekt nachgesagt wird.

Was interessiert es mich? Polio kommt doch gar nicht mehr vor

Das stimmt nur so halb. In Deutschland wurden seit den frühen 1990er Jahren keine Wildtyp-Polio-Fälle mehr beobachtet, wohl aber in Ländern aus denen es Migration nach Deutschland gibt (Afghanistan, Pakistan, Syrien, Demokratische Republik Kongo, Nigeria). Zudem gibt es durch den zunächst verwendeten Lebendimpfstoff Polio-Fälle durch endemisch zirkulierende verwilderte ehemalige Impfstoff-Viren. Diese Polio-Variante hat den schönen Namen cVDPV. Weltweit wurden 2018 105 Fälle von cVDPV beobachtet.

Zunehmend relevanter werden zudem andere neurotrope Enteroviren, insbesondere der Serotyp EV-71 (siehe oben). Neurologische Hauptkomplikation von EV-71 ist zunächst die (normale) virale Meningitis, bei den schwereren Krankheitsbildern vor allem eine Hirnstammenzephalitis, allerdings werden auch Polio-artige Krankheitsbilder beobachtet. EV-D68 – ein weiterer neuer Enterovirus-Serotyp verursacht vor allem schwer verlaufende Atemwegsinfekte, darüber hinaus aber auch eine relativ hohe Rate an der akuten schlaffen Myelitis. Dies ist ein Krankheitsbild was der Polio-Myelitis frappierend ähnelt.

Wo man weiterlesen kann

Kidd, D., Williams, A. J., & Howard, R. S. (1996). Poliomyelitis. Postgraduate Medical Journal, 72(853), 641–647. https://doi.org/10.1136/pgmj.72.853.641

Möhn, N., Skripuletz, T., & Stangel, M. (2018). Neurologische Komplikationen bei Infektionen mit (neuen) Enteroviren. Der Nervenarzt, 89(12), 1320–1331. https://doi.org/10.1007/s00115-018-0619-9

Bao, J., Thorley, B., Isaacs, D., Dinsmore, N., Elliott, E. J., McIntyre, P., & Britton, P. N. (2020). Polio – The old foe and new challenges: An update for clinicians. Journal of Paediatrics and Child Health, 56(10), 1527–1532. https://doi.org/10.1111/jpc.15140

Meyding-Lamadé, U., & Craemer, E. M. (2020). Update Poliomyelitis: Eradikation oder ein wiederkehrendes Problem? NeuroTransmitter, 31(12), 26–30. https://doi.org/10.1007/s15016-020-7576-9