Die Originalversion: Zerebrale Sinus- und Hirnvenenthrombosen nach AstraZeneca-Impfung

Vorab (Vorwort zur Version vom 05. April):

Ja, ich wollte auf keinen Fall, niemals und überhaupt gar nicht hier was zu COVID19 schreiben, aber das regt mich alles so auf, dass ich jetzt doch nicht anders kann. Und bevor ich weiter auf Twitter Leute anpöbel, schreib ich mal ein wenig was auf. Und die Sinus- und Hirnvenenthrombosen nach Impfung mit dem AstraZeneca-Impfstoff sind zumindest ein sehr neurologisches COVID-Thema.
Bislang hab ich ja sehr stark Nischenblog-Beiträge für ein sehr kleines Fachpublikum geschrieben, da ich befürchte (und natürlich wegen der Klickzahlen auch hoffe), dass das auch Nicht-Neurologen und Nicht-Ärzte interessiert, werde ich versuchen die Wage zu halten, so dass das für möglichst alle verständlich wird, aber für „mein“ eigentliches Publikum auch nicht zu lame.

Updates (Changelog):

07.04.2021: Die europäische Arzneimittelagentur (EMA) hat ihre Stellungnahme zum AstraZeneca-Impfstoff aktualisiert, zeitgleich hat die britische Zulassungsbehörde Medicines and Healthcare products Regulatory Agency (MHRA) Stellung zum Auftreten von Sinus- und Hirnvenenthrombosen nach Impfung mit AstraZeneca genommen.

10.04.2021: Die bislang nur als Preprint verfügbare Arbeit aus Greifswald wurde im New England Journal of Medicin (NEJM) nach durchlaufendem Peer-Review-Prozess veröffentlicht (und ist gegenüber dem Preprint noch mal deutlich erweitert), das Paul-Ehrlich-Institut hat seinen Sicherheitsbericht aktualisiert und ausführlich Stellung zur Häufigkeit von Hirnvenen- und Sinusthrombosen genommen. Die EMA berichtet von einzelnen Fällen von vier Fällen von Thrombosen nach Impfung mit dem Vektorimpfstoff von Johnson & Johnson.

20.04.2021: In einem Preprint um die Greifswalder Arbeitsgruppe, die auch den prinzipiellen Mechanismus der Entstehung von Hirnvenenthrombosen nach Impfung mit dem AstraZeneca-Impfstoff beschrieben hat, werden erste Erkenntnisse zur genaueren Pathogenese dieser seltenen, aber schweren Impfnebenwirkung beschrieben.

Was ist passiert?

Nach COVID19-Impfung mit dem AstraZeneca-Impfstoff sind bei einigen jüngeren Geimpften 5 bis 16 Tage nach der Impfung schwere Thrombosekomplikationen aufgetreten, meist in Verbindung mit einem massiven Abfall der Thrombozyten (also der Blutplättchen, [Link Wikipedia]). In den meisten Fällen ist es zu einer Hirnvenen- und Sinusthrombose gekommen, vereinzelt auch zu Thrombosen im Pfortadersystem.
Das Paul-Ehrlich-Institut (PEI) veröffentlicht regelmäßig sogenannte Sicherheitsberichte zu den COVID19-Impfstoffen, die man [hier] abrufen kann. Diese Sicherheitsberichte sind nicht tagesaktuell, sondern werden in Intervallen bereitgestellt und beleuchten dann einen einige Tage zurückliegenden Zeitraum. Der letzte Sicherheitsbericht ([Link]) stammt vom 09.04.2021 und schließt Impfkomplikationen ein, die bis 02.04.2021 berichtet wurden. Nach diesem Sicherheitsbericht ist es bis zum 02.04.2021 zu 42 Fällen einer Sinus- oder Hirnvenenthrombose und bei 23 Betroffenen auch zu einem Abfall der Blutplättchen gekommen. Laut Paul-Ehrlich-Institut seien acht der Fälle tödlich verlaufen. Die Gesellschaft für Thrombose- und Hämostaseforschung (GTH) ([Link]) berichtete am 01.04.2021 ([Link pdf] ) von 31 Fällen mit neun tödlichen Verläufen. Eine Stellungnahme der Deutschen Gesellschaft für Neurologie (DGN) nannte am 30.03.2021 die Zahl von „mehr als 30 Fällen“, welche „6-16 Tage nach der Impfung“ aufgetreten sein ([Link Stellungnahme]).

Bevor man jetzt weiter macht, muss man als erstes einmal rekapitulieren, was eine Sinus- und Hirnvenenthrombose überhaupt ist.

Exkurs: Die „normale“ Sinus- und Hirnvenenthrombose

Neuroanatomie

Das venöse Blut des Gehirns wird in den sogenannten Hirnvenen gesammelt und über die Brückenvenen (das sind die, die beim Subduralhämatom (Link) einreißen) in die Sinus in der harten Hirnhaut (der Dura mater) abgeleitet, von wo aus es in die großen Halsvenen und dann zurück zum Herzen fließt.

In blau sind die duralen venösen Sinus dargestellt, Quelle: Link.
Klugscheißerei vorweg

Der korrekte Name der Erkrankung lautet Sinus- oder Hirnvenenthrombose und wenn doch zerebrale Sinus- und Hirnvenen betroffen sind, dann Sinus- und Hirnvenenthrombose. Man sagt nicht Sinusvenenthrombose, da die Sinus keine Gefäßwand haben und somit keine Venen sind. Für den Begriff Sinusvenenthrombose werden Assistenzärzte in der Neurologie in der Regel in der Röntgenbesprechung aus der ersten Reihe heraus gemaßregelt (same bei Apoplex und Krampfanfall).
Der englischsprachige Begriff der Erkrankung (wenn man mal googeln muss) lautet „cerebral venous thrombosis (CVT)“.

Epidemiologie und Klinik

Die spontane Sinus- und Hirnvenenthrombose (SVT) ist mit einer Prävalenz von 1,3-1,6/100.000 Einwohner eine seltene Erkrankung, aber doch ungefähr 3-4 x häufiger, als man noch vor wenigen Jahren angenommen hat. Die meisten SVT verlaufen mild, die Mortalität liegt unter 5% und die Rate an Betroffenen mit vollständiger Erholung bei mindestens 75%.

Abhängig vom Ort der Thrombose und dem Durchmesser der betroffenen Hirnvene oder des betroffenen Sinus reichen die Beschwerden von leicht und unspezifisch bis hin zu schwer und lebensbedrohlich. Klassische Symptome einer (schweren) SVT sind lageabhängige Kopfschmerzen (im Liegen stärker durch einen erhöhten Hindruck durch den gestörten venösen Abfluss), Sehstörungen (durch eine Stauungspapille ([Link Wikipedia]), ebenfalls durch den Hirndruck) und dann Komplikationen, die durch den fehlenden venösen Abfluss entstehen, insbesondere eine Ödembildung um das verschlossene Gefäß, aber auch Stauungsblutungen (sozusagen die Steigerung des Ödems mit Einblutung in das Gehirngewebe). Hierdurch kommt es häufig zu neurologischen Ausfallserscheinungen und epileptischen Anfällen.

Bei mindestens 20-35% der SVT lässt sich keine Ursache identifizieren, bei ca. 10% der Erkrankungen besteht eine orale Kontrazeption (also die Antibabypille) als möglicher Risikofaktor. Auch wenn es naheliegend scheint, besteht keine sichere Assoziation zu vermehrten SVT bei genetischen oder erworbenen Thrombophilien (Gerinnungsstörungen [Link Wikipedia]). Dies betrifft maximal 10% der Fälle, in wenigen Arbeiten werden auch 25% angenommen. Wohl aber kommt es in der Schwangerschaft zu vermehrten SVT. Hier schätzt man die Häufigkeit auf 12/100.000 Schwangerschaften, also als ca. 10 x häufiger als in der Gesamtbevölkerung.

Diagnostik

Die Bildgebung per CT und MRT insbesondere in Verbindung mit einer venösen Angiographie (Gefäßdarstellung) kann mit hoher Sensitivität relevante Hirnvenen- oder Sinusthrombosen detektieren. Bei jüngeren Patienten wird zur Reduktion der Strahlenbelastung die MRT angeraten. Auch wenn es formal anders empfohlen wird, kann man auch mit einer nativen MRT ohne Angiographie schon die allermeisten (und in jedem Fall größere) SVT ausschließen. Laborchemisch kommt – analog zur tiefen Beinvenenthrombose – die Bestimmung der D-Dimere ([Link Wikipedia]) zum Einsatz. Hier ist es – wie immer bei den D-Dimeren – so, dass negative D-Dimere in Verbindung mit einer klar umrissenen Klinik (in diesem Fall isolierte Kopfschmerzen ohne objektivierbares neurologisches Defizit) mit einer Spezifität von 99,8% eine SVT ausschließen können. Anders herum liegt die Spezifität für ein relevantes thrombotisches Ereignis bei positiven D-Dimeren nur bei 33% und man muss dann auf jeden Fall ein weiteres diagnostisches Verfahren anwenden, um eine SVT nachweisen oder ausschließen zu können. Kurz gesagt, negative D-Dimere schließen eine relevante Thrombose mit hoher Sicherheit aus, positive belegen diese aber eben nicht.

Therapie

Die Therapie leitet sich (auf Grund der schlechten Studienlage) von der Behandlung der tiefen Bein- und Beckenvenenthrombosen ([Link Wikipedia]) ab und besteht aus einer Antikoagulation (Gerinnungshemmung) zunächst mit Heparinen ([Link Wikipedia]). Hier kommt es im praktischen Alltag immer wieder zu erbitterten Diskussionen, ob nun ein Heparin-Perfusor mit unfraktioniertem Heparin angewendet oder die Gabe von niedermolekularen Heparinen in therapeutischer Dosis erfolgen sollte. Hierzu muss man wissen, dass es insgesamt nur zwei brauchbare klinische Studien mit insgesamt 79 eingeschlossenen Patienten zu der Fragestellung gibt und man daher kaum belastbare Aussagen treffen kann. Insgesamt konnte immer wieder die Überlegenheit von niedermolekularen Heparinen gegenüber einem Heparin-Perfusor gezeigt werden, allerdings haben alle Studien kleinere bis größere methodische Schwächen (z.B. wurden in einer Studie die schwerer betroffenen Patienten v.a. mit Heparin-Perfusoren behandelt). Zugelassen ist weiterhin nur die Gabe von unfraktioniertem Heparin. Im klinischen Alltag wird meist mit einem Heparin-Perfusor begonnen und wenn dann – erwartbar – die PTT immer zwischen unter- und übertherapeutisch pendelt – irgendwann auf die Gabe von 2 x tgl. niedermolekularen Heparinen umgestellt.

Im Verlauf erfolgt dann klassischerweise eine orale Antikoagulation mit Vitamin K-Antagonisten (also Marcumar, [Link Wikipedia]) und zwar auch, wenn eine Stauungsblutung vorliegt. Es gibt eine neuere Studie, die den Einsatz von Dabigatran ([Link Wikipedia]) als besser steuerbares Antikoagulanz im Vergleich zu Vitamin K-Antagonisten getestet hat (mit etwas uneindeutigem Ergebnis), zugelassen sind aber weiterhin nur Vitamin K-Antagonisten. Die Dauer der Antikoagulation wird von den Empfehlungen zur Beinvenenthrombose abgeleitet, in der Regel antikoaguliert man für ein halbes Jahr, bei wiederholten Thrombosen oder einer nachgewiesenen Thrombophilie lebenslang.

Bei schweren Verläufen kann – bei schlechter Evidenzlage – eine mechanische Thrombektomie und ggfs. lokale Lysebehandlung und bei raumfordernden Blutungen eine Kraniotomie erwogen werden.

Wo man weiterlesen kann:

Ferro, J. M., Coutinho, J. M., Dentali, F., Kobayashi, A., Alasheev, A., Canhão, P., Karpov, D., Nagel, S., Posthuma, L., Roriz, J. M., Caria, J., Frässdorf, M., Huisman, H., Reilly, P., & Diener, H.-C. (2019). Safety and Efficacy of Dabigatran Etexilate vs Dose-Adjusted Warfarin in Patients With Cerebral Venous Thrombosis. JAMA Neurology, 76(12), 1457. https://doi.org/10.1001/jamaneurol.2019.2764

Weimar, C., Holzhauer, S., Knoflach, M., Koennecke, H., Masuhr, F., Mono, M.-L., Niederstadt, T., Nowak-Göttl, U., Schellong, S. M., & Kurth, T. (2019). Zerebrale Venen- und Sinusthrombose. Der Nervenarzt, 90(4), 379–387. https://doi.org/10.1007/s00115-018-0654-6

Kowoll, C. M., & Dohmen, C. (2020). Sinus‑/Hirnvenenthrombose: wann Therapie eskalieren? DGNeurologie, 3(3), 198–205. https://doi.org/10.1007/s42451-020-00178-6

Wie entstehen die Sinus- und Hirnvenenthrombosen nach Impfung mit dem AstraZeneca-Impfstoff?

Nachdem es zunächst ein Preprint aus der Transfusionsmedizin der Uniklinik in Greifswald gab ([Link], [Link pdf]), ist am 09.04.2021 das peer reviewd-Paper hierzu im New England Journal of Medicine (NEJM) veröffentlicht worden ([Link]). Im Vergleich zum Preprint ist dies noch mal ausführlicher und aufschlussreicher. Der Erstautor scheint sich schwerpunktmäßig mit dem Thema Heparin-induzierte Thrombozytopenien zu beschäftigen (und ist dementsprechend auch Erstautor des verlinkten Papers beim Exkurs Heparin-induzierte Thrombozytopenie unten).

In der Arbeit wird eine Fallserie von 11 Patienten aus Deutschland und Österreich mit schweren Impfkomplikationen nach Impfung mit dem AstraZeneca-Impfstoff berichtet, wobei davon neun Frauen und zwei Männer waren, das Alter zwischen 22 und 49 Jahren lag. Von diesen 11 Patienten litten 9 an einer Sinus- oder Hirnvenenthrombose, drei an einer Pulmonalarterien-Embolie (Lungenarterienembolie, [Link Wikipedia]), drei an einer Thrombose des Pfortaderkreislaufes (einer seltenen internistischen Erkrankung, welche normalerweise in Kombination mit einer Leberzirrhose auftritt, [Link Wikipedia]) und fünf an einer disseminierten intravasalen Gerinnungsstörung ([Link Wikipedia]). Die Fälle verliefen schwer, sechs der 11 Patienten sind verstorben.

In den verfügbaren Blutproben von zunächst vier Patienten fanden sich in drei Fällen anti-PF4/Heparin-Antikörper (also wie bei einer Heparin-induzierten Thrombozytopenie Typ 2; alle in Hämatologie nicht so Sattelfesten schauen einfach unten beim nächsten Exkurs nach), ohne dass diese zuvor Heparin (was ja ansonsten die Voraussetzung für eine Heparin-induzierte Thrombozytopenie ist) erhalten hatten.

Exkurs: Heparin-induzierte Thrombozytopenie

Prinzipiell lässt sich – v.a. bei der Gabe von unfraktioniertem Heparin – bei gut 25% der damit behandelten Patienten in den ersten Tagen ein Abfall der Thrombozyten um 30 bis maximal 50% beobachten, bevor die Thrombozytenwerte wieder ansteigen. Dieses Phänomen nennt man Heparin-induzierte Thrombozytopenie (HIT) Typ I (Link Wikipedia). Die HIT Typ 1 entsteht, da unfraktioniertes Heparin stark negativ geladen ist und Thrombozyten stark positiv und das Heparin so an die Thrombozyten bindet und diese aktiviert. Bei der HIT Typ 1 handelt es sich eher um ein Phänomen als eine Erkrankung, eine Behandlung ist in der Regel nicht notwendig.

Bei der Heparin-induzierte Thrombozytopenie Typ II ist das anders. Hier entsteht durch das eben beschriebene Binden der Thrombozyten mit dem Heparin eine Immunreaktion bei den Patienten, in deren Folge vier bis fünf Tage nach Erstgabe Antikörper gegen ein Oberflächenprotein der Thrombozyten, den Plättchenfaktor 4 (PF4) gebildet werden. Diese Antikörper binden an die Thrombozyten und verklumpen diese, weshalb dann Thrombosen sowohl im venösen als auch im arteriellen System entstehen. Parallel fällt die Zahl der Thrombozyten stark ab (diese werden ja auch gerade immunologisch bekämpft), so dass neben den Thrombosen durch den Thrombozytenmangel auch Blutungskomplikationen entstehen können.

Wichtigste präventive Maßnahme ist das Verwenden niedermolekularer Heparine, die eben nicht so stark negativ geladen sind und daher auch weniger an Thrombozyten binden und dadurch auch weniger wahrscheinlich (und weniger stark) eine derartige Immunreaktion auslösen. Zweite präventive Maßnahme ist die möglichst kurze und niedrig dosierte Heparin-Gabe.

Oft können bei der HIT Typ 2 Antikörper gegen den Plättchenfaktor 4 nachgewiesen werden. Schon beim Verdacht auf eine HIT Typ 2 muss die Heparin-Gabe umgehend beendet werden und alternativ Präparate, die eben nicht Plättchenfaktor 4-Antikörper induzieren, gegeben werden. Dies sind in der Regel Argatroban oder Fondaparinux. Bis zu einem Drittel der Fälle verlaufen schwer, durchaus auch mit letalem Ausgang.

Wo man weiterlesen kann:

Greinacher, A. (2003). Heparininduzierte Thrombozytopenie. Dtsch Arztebl International, 100(34–35), A-2220. https://www.aerzteblatt.de/int/article.asp?id=38178

Zurück zum AstraZeneca-Impfstoff

Nach dem ersten Nachweis von HIT Typ 2-typischen Antikörpern wurden weitere Blutproben (insgesamt 24, also damit noch weitere Blutproben von Patienten, die in der Fallserie nicht auftauchen) untersucht, welche ebenfalls von Patienten mit schweren thrombotischen Komplikationen nach Impfung mit dem AstraZeneca-Impfstoff stammten. Von diesen kam es bei 22 Patienten zu einer starken Thrombozytenaktivierung nach Gabe von PF4 und nach Gabe des AstraZeneca-Impfstoffes. Es gab eine Kontrollgruppe mit 20 Patientenseren von mit AstraZeneca-Geimpften, welche keine Komplikationen entwickelt hatten, bei denen diese Thrombozytenaktivierung nicht gezeigt werden konnte.

Bei allen Patienten-Serumproben konnte die Thrombozytenaktivierung durch die Gabe von intravenösen Immunglobulinen (IVIG) gehemmt werden und durch einen monoklonalen Antikörper gegen CD32 (Monoklonaler Antikörper IV.3). CD32 ([Link englische Wikipedia]) als Oberflächenprotein kommt auf einer Menge von Immunzellen vor und bindet u.a. an IgG-Antikörper, insbesondere aber an Immunkomplexe. Im Umkehrschluss heißt das, dass bei den Serumproben die Thrombozytenaktivierung aufhörte, wenn zirkulierende Immunkomplexe aus IgG-Antikörpern gebunden wurden (was wiederum zu dem passt, was bei einer Heparin-induzierten Thrombozytopenie Typ 2 passiert).

Die Autoren betonen, dass sowohl das klinische Bild, als auch die serologischen Befunde dem ähneln, was man bei einer Heparin-induzierten Thrombozytopenie Typ 2 beobachten kann. Sie erwähnen, dass in den letzten Jahren verschiedene Chemikalien und Medikamente, virale und bakterielle Infekte, aber auch Kniegelenksersatz-Operationen beschrieben wurde, bei denen es zu einem Bild einer Heparin-induzierten Thrombozytopenie Typ 2 gekommen sei, ohne dass zuvor (so wie bei den mit AstraZeneca-Geimpften) Heparin gegeben worden sei. Hierfür sei der Begriff autoimmun Heparin-induzierte Thrombozytopenie geprägt worden. Im Gegensatz zu Patienten mit klassischer Heparin-induzierter Thrombozytopenie würden Patienten mit autoimmuner Heparin-induzierter Thrombozytopenie oft eine ungewöhnlich schwere Thrombozytopenie, eine erhöhte Häufigkeit einer disseminierten intravasalen Gerinnungsstörung und atypische thrombotische Ereignisse zeigen. Anders als bei der klassischen Heparin-induzierten Thrombozytopenie würde niedrig dosiertes niedermolekulares Heparin eher protektiv wirken und den Immunprozess nicht noch weiter antreiben. Hinsichtlich der Nomenklatur dieser autoimmunen Heparin-induzierten Thrombozytopenien wird der Begriff „vaccine-induced immune thrombotic thrombocytopenia (VITT)“ vorgeschlagen.

Am 20. April 2021 wurde von der selben Arbeitsgruppe, erweitert um Forscher u.a. aus dem UKE, ein Preprint (also entsprechend müssen die Aussagen noch unter Vorbehalt verstanden werden) veröffentlicht ([Link]), welches sich genauer mit den Mechanismen der Entstehung der VITT beschäftigt. Hier wurde in einem recht aufwändigen experimentellen Setting ein mehrstufiger Prozess beschrieben, der direkt nach der Injektion des Impfstoffes beginnt und durch die Art des Impfstoffes, seine Zusatzstoffe und die starke Entzündungsreaktion, die er auslöst, bedingt ist.
Nach der Injektion kommen Impfstoffbestandteile und Thrombozyten unweigerlich in Kontakt, was zu einer Aktivierung der Thrombozyten führt. Im Rahmen der Aktivierung exprimieren die Thrombozyten Plättchenfaktor 4 (PF4). PF4 wiederum bindet an verschiedene Impfstoffbestandteile, u.a. das als Vektor verwendete Adenovirus, aber auch an menschliche Proteine, die im Impfstoff enthalten sind und die offenbar bei der Impfstoffherstellung verwendet wurden. So entstehen erste Komplexe aus Thrombozyten und Impfstoffbestandteilen. Dadurch, dass im Impfstoff geringe Mengen EDTA ([Link Wikipedia]) enthalten sind, welches zu einer vermehrten Durchlässigkeit insbesondere der Kapillaren führt, kommen zum Einen der Impfstoff und seine Bestandteile, zum Anderen aber auch die PF4-Impstoff-Komplexe in den Blutkreislauf. An diese binden natürlich vorkommende IgG-Antikörper, so dass „klassische“ Immunkomplexe entstehen, die jetzt eine immunologische Reaktion auslösen: Die Aktivierung des Komplementsystems ([Link Wikipedia]) und eine B-Zell-vermittelte Immunantwort. Spätestens das führt mit zu der systematischen Entzündungsreaktion, die ja insbesondere jüngere Menschen 8 bis 24 Stunden nach der Injektion erleiden. Und: Wie wir gerade bei dem HIT-Exkurs gelernt haben, begünstigen systemische Entzündungsreaktionen und Gewebetraumen (die Muskulatur an der Injektionsstelle) die Entstehung einer HIT. Warum das so ist scheint ein unglaublich komplexer Prozess zu sein, den ich nur so halb verstehe, deshalb kürze ich ihn ab. Am Ende kommt es hier zu noch mehr Thrombozytenaktivierung und PF4-Freisetzung und zu einer Aktivierung neutrophiler Granulozyten, Monozyten und Endothelzellen mit der Entstehung von Thrombosen. In dieser Konstellation bilden sich dann Antikörper gegen PF4, was wiederum zu einer weiteren Immunreaktion führt, der HIT-ähnlichen VITT.

Wo man weiterlesen kann

Greinacher, A., Selleng, K., Wesche, J., Handtke, S., Palankar, R., Aurich, K., Lalk, M., Methling, K., Völker, U., Hentschker, C., Michalik, S., Steil, L., Schönborn, L., Beer, M., Franzke, K., Rangaswamy, C., Mailer, R. K., Thiele, T., Kochanek, S., … Renné, T. (2021). Towards Understanding ChAdOx1 nCov-19 Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT). Research Square. https://doi.org/10.21203/rs.3.rs-440461/v1

Klinische Merkmale der Patienten mit schwerer Impfreaktion

Im Paper wird eine Tabelle mit den 11 beschriebenen Fällen aufgeführt, in der auf verschiedene Laborparameter, aber auch auf die Erkrankungsart und das Outcome eingegangen wird. Ich habe hier mal die wichtigsten Parameter aufgeführt:

Fall1234567891011
Thrombozyten min. (/nl)1310760923752916138??
D-Dimer max. (mg/ml)1421,813????2,633??2135??
Ort der ThrombosePfortader, Aorta, LAE, SVTLAESVTSVTSVT, Pfortader, LAE, VCI, RVSVTSVTSVT, disseminiert im ganzen KörperSVT, multiple OrganeSVT, PfortaderSVT, ICB
Symptombeginn nach Impfung569713788161112
Gerinnungsstörungneinneinneinneinjaneinneinneinneinneinnein
OutcomeletalBesserungunklarletalBesserungBesserungBesserungletalletalletalletal
nach: nach: Greinacher, A., Thiele, T., Warkentin, T. E., Weisser, K., Kyrle, P. A., & Eichinger, S. (2021). Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine, NEJMoa2104840. https://doi.org/10.1056/NEJMoa2104840, Link pdf

Auffällig ist, dass die Patienten, die an den Komplikationen nach der Impfung verstorben sind, alle extrem niedrige Thrombozytenwerte (um 20/nl) hatten und die mit gutem Outcome deutlich höhere. Auffällig ist auch, dass das Auftreten der schweren Impfreaktionen mindestens fünf Tage gedauert hat, was nahelegt, dass die thrombotischen Komplikationen nicht direkt durch den Impfstoff, sondern durch die immunologische Reaktion auf die Impfung ausgelöst werden.

Empfehlung für das Management von Impfreaktionen

Die Autoren des Papers führen an, dass die Kombination aus einer Thrombozytopenie und thrombotischen Komplikationen nach einer Impfung mit dem AstraZeneca-Impfstoff unbedingt an eine vaccine-induced immune thrombotic thrombocytopenia (VITT) denken lassen sollte. Sie betonen, dass der Nachweis von anti-PF4/Heparin-Antikörpern in vielen Krankenhäusern geführt werden kann, da es überall Konzepte und Abläufe zur Detektion von Heparin-induzierten Thrombozytopenien gibt, weisen aber auch darauf hin, dass eben nicht alle der Patienten mit schlechtem Outcome anti-PF4/Heparin-Antikörper hatten. In diesen Fällen sollten auch andere immunvermittelte Ursachen einer Thrombozytopenie wie ein hämolytisch-urämisches Syndrom (HUS, [Link Wikipedia]) (das war das von EHEC, [Link Wikipedia]) oder ein Antiphospholipid-Syndrom ([Link Wikipedia]) bedacht werden. Zudem kann in der Universitätsklinik Greifswald ein spezieller Thrombozytenaktivierungs-Test mit „PF4-Verstärkung“ angefordert werden.

Die Autoren empfehlen zum Einen den Einsatz von intravenösen Immunglobulinen (IVIG) (1 g/kg Körpergewicht) zum Stoppen der Immunreaktion, sowie eine Antikoagulation mit direkten oralen Antikoagulanzien wie Rivaroxaban oder Apixaban (also Faktor Xa-Antagonisten) oder Argatroban oder Fondaparinux, deren Einsatz auch bei der Heparin-induzierten Thrombozytopenie empfohlen wird.

Durchgemachte Thrombose, Thrombophilie und AstraZeneca-Impfung:

Eine durchgemachte Thrombose sollte eigentlich kein Problem darstellen, da der Mechanismus der Entstehung „normaler“ Thrombosen und auch „normaler“ SVT ein ganz anderer ist als bei der überschießenden Impfreaktion. Eine andere Frage ist, ob eine durchgemachte Heparin-induzierte Thrombozytopenie nicht eine absolute Kontraindikation für die Impfung mit dem AstraZeneca-Impfstoff darstellt. Hier gibt es ja zwei Möglichkeiten: Entweder bestehen schon präformierte anti-PF4/Heparin-Antikörper und es kommt sehr rasch zu einer schweren Immunreaktion oder es passiert gar nichts, weil der Weg der Induktion der Heparin-induzierten Thrombozytopenie ein ganz anderer ist (einmal Heparin, einmal Impfstoff). Das ist auf jeden Fall noch unklar.

Menschen, die auf Grund einer Thrombophilie schon eine orale Antikoagulation einnehmen, nehmen ja sozusagen schon die Therapie der möglichen Impfnebenwirkung ein.

Aber bei den anderen Impfstoffen gibt es doch auch Thrombosen, auch Sinus- und Hirnvenenthrombosen

Das stimmt, man muss das aber differenzieren:

Beim Impfstoff von Johnson & Johnson, der ja auch ein Vektorimpfstoff ([Link Wikipedia]) ist (er benutzt ein Adenovirus statt des Schimpansen-Virus von AstraZeneca als Vektor) hat die EMA am 09.04.2021 bekannt gegeben, dass sie den Impfstoff auf Grund von fünf Fällen von schweren Thrombosen in Verbindung mit einer Thrombozytopenie, welche nach Impfungen in den USA aufgetreten seien, genauer untersuchen werde ([Link]). Das klingt natürlich ziemlich sehr nach einer vaccine-induced immune thrombotic thrombocytopenia.

In dem selben Bericht wird auch erwähnt, dass zudem fünf Fälle des sonst extremst seltenen Kapillar-Leck-Syndroms ([Link Wikipedia]) nach Impfung mit dem AstraZeneca-Impfstoff untersucht werden.
Für den BioNTech-Impfstoff wurden laut dem oben erwähnten Risikobericht des Paul-Ehrlich-Instituts ([Link]) bis zum 02.04.2021 17 Fälle einer Thrombozytopenie und sieben SVT berichtet, allerdings nie in Kombination auftretend. Angesichts von 10.722.876 bis dahin verimpften Dosen entspräche dies aber dem statistisch Erwartbaren in der Bevölkerung.

Die Frage nach dem Risiko Impfung mit AstraZenaca-Impfstoff vs. COVID19-Infektion

Sicher der Elefant im Raum, aber auch ein schwieriges Thema, so dass ich lange überlegt habe, ob ich überhaupt was dazu schreibe. Zum Einen ist es ein extrem emotionsbehaftetes Thema, wenn ich Pech habe, sammeln sich hierunter laute unschöne Kommentare. Zweitens hatte ich in den bisherigen Versionen dieses Artikels noch große Schwierigkeiten gute Daten für eine Risikoberechnung zu bekommen und Drittens kann das auch nicht besonders gut.

Das mit den Daten hat sich mit dem letzten Risikobericht des Paul-Ehrlich-Instituts ([Link]) deutlich gebessert. So kann man dort recht einfach nachlesen, dass bis zum 02.04.2021 2.945.125 Dosen des AstraZeneca-Impfstoffs verimpft wurden, 86% der Dosen gingen beim AstraZeneca-Impfstoff auf Grund der Zulassungshistorie (erst nur junge Impflinge, dann Impfstop, dann wieder junge Impflinge, jetzt ältere Impflinge) an Impflinge unter 60 Jahren. Das wären nach Adam Riese und Siri 2.532.808 Dosen, die Menschen unter 60 Jahre erhalten haben. Über alle COVID19-Impfstoffe lag der Anteil der weiblichen Impflinge bei 64%.

42 / 2.945.125 ergibt ein Risiko von 0,00142608548% einer SVT, bzw. 1,43 SVT/100.000 Impfungen über alle Altersgruppen hinweg nach Impfung mit dem AstraZeneca-Impfstoff in Deutschland,.

42 / 2.532.808 dann ein Risiko von 0,0016582386% einer SVT, bzw. 1,66 SVT/100.000 Impfungen bei unter 60-jährigen Impflingen nach Impfung mit dem AstraZeneca-Impfstoff in Deutschland.

Ist das jetzt viel oder wenig? Gefühlt nicht so wenig, auf Hamburg bezogen wären das (alle, incl. Kinder, durchgeimpft) immerhin 25,74 SVT.

Es gibt sehr aktuelle Arbeiten, die bei ausreichend großer Datenbasis sowohl Angaben zur Mortalität nach Altersgruppen und Geschlecht für den COVID19-Wildtyp und die B.1.1.7-Mutation aufführen. Wenn man das dann tabellarisch aufarbeitet, sieht das Risiko wie folgt aus:

GeschlechtAlterRisiko ImpfungRisiko C19-WildtypVerhältnisRisiko B.1.1.7Verhältnis
weiblich0-340,00166%0,00069%2,4 : 10,0011%1,5 : 1
35-540,00166%0,033%1 : 200,05%1 : 30
55-690,00143%0,18%1 : 1260,28%1 : 196
70 – 840,00143%2,9%1 : 20284,4%1 : 3077
> 850,00143%13%1 : 909119%1 : 13287
männlich0-340,00166%0,0031%1 : 1,90,0047%1 : 2,8
35-540,00166%0,064%1 : 390,099%1 : 60
55-690,00143%0,56%1 : 3910,86%1 : 601
70 – 840,001434,7%1 : 32877,2%1 : 5035
> 850,0014317%1 : 1188825%1 : 17483
Mortalität-Daten COVID19 nach Altersgruppen und Geschlecht nach: Davies, N. G., Jarvis, C. I., Edmunds, W. J., Jewell, N. P., Diaz-Ordaz, K., & Keogh, R. H. (2021). Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. https://doi.org/10.1038/s41586-021-03426-1

Demnach sollten sich Frauen unter 34 Jahren auf jeden Fall nicht mit AstraZeneca impfen lassen, bei Männern unter 34 Jahren gibt es einen kleinen Benefit der Impfung, alle anderen Altersgruppen unter 69 Jahren profitieren deutlich. Die darüber erst recht.

Nimmt man Daten aus der ganzen EU und dem Vereinigten Königreich, wie das die EMA in ihrem Bericht vom 07.04.2021 ( [Link]) gemacht hat, kommt man ( in einer Fußnote bis zum 04.04.2021 aufsummiert) auf 169 Sinusthrombosen und 53 Pfortaderthrombosen bei insgesamt 34 Millionen mit dem AstraZeneca-Impfstoff geimpften Personen. Rechnerisch beim worst case scenario (keine parallelen Fälle einer SVT und einer Pfortaderthrombose) ergäbe das ein Risiko von

222 / 34.000.000 = 0,0006529411765%, bzw. 0,65 Thrombosen/100.000 Impfungen über alle Altersgruppen.

Das Risiko ist vermutlich deshalb noch mal kleiner als bei den deutschen Daten, da in Großbritannien ja eine ähnliche Impfreihenfolge wie bei uns gilt, der AstraZeneca-Impfstoff von Anfang an aber auch und vor allem älteren Impflingen verabreicht wurde, so dass hier das durchschnittliche Risiko über alle Altersgruppen kleiner erscheint.

Deutlich interessanter und aussagekräftiger finde ich aber folgende Grafiken von Alexandra Freeman von der Universität von Cambridge vom Winton Centre for Risk and Evidence Communication, die mit ihrer Arbeitsgruppe Nutzen und Risiko der AstraZeneca-Impfung nach Altersgruppen aufgeschlüsselt hat und zwar sowohl bei niedrigen, moderaten und hohen COVID19-Inzidenzen. Und hier zeigt sich nur bei der niedrigen Inzidenz (2/10.000 Einwohner, in „unserer“ Rechnung 20/100.000 Einwohner) für die jüngste Altersgruppe kein Benefit der Impfung mit einem höheren Risiko einer Intensivstationsaufnahme durch die Impfung. In allen anderen Fällen gibt es einen klaren Vorteil der Impfung:

Diese Grafik wurde auch in der Stellungnahme der Medicines and Healthcare products Regulatory Agency (MHRA) in Großbritannien (das ist sowas ähnliches wie das Paul-Ehrlich-Institut bei uns) vom 07.04.2021 zum AstraZeneca-Impfstoff verwendet ([Link], [Link Präsentation]). Die MHRA empfiehlt den AstraZeneca-Impfstoff diesen Berechnungen folgend nur für unter 30-Jährige nicht. Damit decken sich die britischen Berechnungen im Wesentlichen mit meinen, was mich ja irgendwie freut.

Abschließendes

Wenn sich hier ein grober Fehler eingeschlichen haben sollte, sagt mir bitte Bescheid. Wenn Ihr bessere Zahlen habt, ebenso (gerne unten in die Kommentare). Wenn Ihr den Beitrag kommentieren / ergänzen wollt, gerne. Wenn Ihr kundtun wollt, dass es COVID19 nicht gibt oder dass Ihr Impfungen generell doof findet, mach das bitte woanders (die Kommentare werde ich nicht freigeben). Wenn Ihr mal pöbeln wollt und müsst, lasst uns das auf Twitter verlegen, da mach ich das auch. Das bietet sich dafür mehr an. Danke!

Wo man weiterlesen kann:

Praktiknjo, M., Meyer, C., Strassburg, C. P., & Trebicka, J. (2017). Frische venöse Thrombose splanchnischer Gefäße: Zwei Fallberichte zur kathetergestützten lokalen Thrombolyse und -aspiration. Internist, 58(1), 82–89. https://doi.org/10.1007/s00108-016-0120-0

Davies, N. G., Jarvis, C. I., Edmunds, W. J., Jewell, N. P., Diaz-Ordaz, K., & Keogh, R. H. (2021). Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. https://doi.org/10.1038/s41586-021-03426-1

Greinacher, A., Thiele, T., Warkentin, T. E., Weisser, K., Kyrle, P. A., & Eichinger, S. (2021). Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine, NEJMoa2104840. https://doi.org/10.1056/NEJMoa2104840

Stellungnahme der Gesellschaft für Thrombose- und Hämostaseforschung (GTH): Link Originalversion und Link aktualisierte Version

Ein Gedanke zu “Die Originalversion: Zerebrale Sinus- und Hirnvenenthrombosen nach AstraZeneca-Impfung”

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit deinem WordPress.com-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s